A Course in Calculus and Real Analysis

Author: Sudhir R. Ghorpade
Publisher: Springer Science & Business Media
ISBN: 9780387305301
Release Date: 2006-06-05
Genre: Mathematics

This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.

Introduction to Real Analysis

Author: Michael J. Schramm
Publisher: Courier Corporation
ISBN: 9780486131924
Release Date: 2012-05-11
Genre: Mathematics

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

Problems and Solutions in Real Analysis

Author: Masayoshi Hata
Publisher: World Scientific
ISBN: 9789812776013
Release Date: 2007
Genre: Mathematics

This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis.

A First Course in Real Analysis

Author: Sterling K. Berberian
Publisher: Springer Science & Business Media
ISBN: 9781441985484
Release Date: 2012-09-10
Genre: Mathematics

Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.

A First Course in Real Analysis

Author: M.H. Protter
Publisher: Springer Science & Business Media
ISBN: 9781461599906
Release Date: 2012-12-06
Genre: Mathematics

The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.

The Real Numbers and Real Analysis

Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 9780387721767
Release Date: 2011-05-27
Genre: Mathematics

This rigorous, detailed introduction to real analysis presents the fundamentals clearly and includes definitions, theorems and proofs. Mirroring the structure of standard calculus courses makes it especially accessible to university students of mathematics.

Real Mathematical Analysis

Author: Charles Chapman Pugh
Publisher: Springer
ISBN: 9783319177717
Release Date: 2015-07-29
Genre: Mathematics

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri’s Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali’s Covering Lemma, density points — which are rarely treated in books at this level — and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.

Real Analysis

Author: John M. Howie
Publisher: Springer Science & Business Media
ISBN: 9781447103417
Release Date: 2012-12-06
Genre: Mathematics

Real Analysis is a comprehensive introduction to this core subject and is ideal for self-study or as a course textbook for first and second-year undergraduates. Combining an informal style with precision mathematics, the book covers all the key topics with fully worked examples and exercises with solutions. All the concepts and techniques are deployed in examples in the final chapter to provide the student with a thorough understanding of this challenging subject. This book offers a fresh approach to a core subject and manages to provide a gentle and clear introduction without sacrificing rigour or accuracy.

Real Analysis

Author: N. L. Carothers
Publisher: Cambridge University Press
ISBN: 0521497566
Release Date: 2000-08-15
Genre: Mathematics

A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.

Understanding Analysis

Author: Stephen Abbott
Publisher: Springer
ISBN: 9781493927128
Release Date: 2015-05-19
Genre: Mathematics

This lively introductory text exposes the student to the rewards of a rigorous study of functions of a real variable. In each chapter, informal discussions of questions that give analysis its inherent fascination are followed by precise, but not overly formal, developments of the techniques needed to make sense of them. By focusing on the unifying themes of approximation and the resolution of paradoxes that arise in the transition from the finite to the infinite, the text turns what could be a daunting cascade of definitions and theorems into a coherent and engaging progression of ideas. Acutely aware of the need for rigor, the student is much better prepared to understand what constitutes a proper mathematical proof and how to write one. Fifteen years of classroom experience with the first edition of Understanding Analysis have solidified and refined the central narrative of the second edition. Roughly 150 new exercises join a selection of the best exercises from the first edition, and three more project-style sections have been added. Investigations of Euler’s computation of ζ(2), the Weierstrass Approximation Theorem, and the gamma function are now among the book’s cohort of seminal results serving as motivation and payoff for the beginning student to master the methods of analysis.

Introduction to Calculus and Classical Analysis

Author: Omar Hijab
Publisher: Springer
ISBN: 9783319284002
Release Date: 2016-02-09
Genre: Mathematics

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.

A Course in Real Analysis

Author: Hugo D. Junghenn
Publisher: CRC Press
ISBN: 9781482219289
Release Date: 2015-02-13
Genre: Mathematics

A Course in Real Analysis provides a rigorous treatment of the foundations of differential and integral calculus at the advanced undergraduate level. The book’s material has been extensively classroom tested in the author’s two-semester undergraduate course on real analysis at The George Washington University. The first part of the text presents the calculus of functions of one variable. This part covers traditional topics, such as sequences, continuity, differentiability, Riemann integrability, numerical series, and the convergence of sequences and series of functions. It also includes optional sections on Stirling’s formula, functions of bounded variation, Riemann–Stieltjes integration, and other topics. The second part focuses on functions of several variables. It introduces the topological ideas (such as compact and connected sets) needed to describe analytical properties of multivariable functions. This part also discusses differentiability and integrability of multivariable functions and develops the theory of differential forms on surfaces in Rn. The third part consists of appendices on set theory and linear algebra as well as solutions to some of the exercises. A full solutions manual offers complete solutions to all exercises for qualifying instructors. With clear proofs, detailed examples, and numerous exercises, this textbook gives a thorough treatment of the subject. It progresses from single variable to multivariable functions, providing a logical development of material that will prepare students for more advanced analysis-based courses.

Advanced Calculus

Author: Thomas P. Dence
Publisher: Academic Press
ISBN: 0080959326
Release Date: 2009-12-02
Genre: Mathematics

Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis – providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. It covers exponential function, and the development of trigonometric functions from the integral. The text is designed for a one-semester advanced calculus course for advanced undergraduates or graduate students. Appropriate rigor for a one-semester advanced calculus course Presents modern materials and nontraditional ways of stating and proving some results Includes precise historical notes throughout the book outstanding feature is the collection of exercises in each chapter Provides coverage of exponential function, and the development of trigonometric functions from the integral

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade
Publisher: Springer Science & Business Media
ISBN: 9781441916211
Release Date: 2010-03-20
Genre: Mathematics

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.