Author: Sudhir Ghorpade

Publisher:

ISBN: 9783030014001

Release Date: 2018

Genre: Calculus

Skip to content
## A Course in Calculus and Real Analysis

## A Course in Calculus and Real Analysis

This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.
## A Course in Multivariable Calculus and Analysis

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.
## A First Course in Real Analysis

The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.
## Problems and Solutions in Real Analysis

This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis.
## Real Mathematical Analysis

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
## Real Analysis

Real Analysis is a comprehensive introduction to this core subject and is ideal for self-study or as a course textbook for first and second-year undergraduates. Combining an informal style with precision mathematics, the book covers all the key topics with fully worked examples and exercises with solutions. All the concepts and techniques are deployed in examples in the final chapter to provide the student with a thorough understanding of this challenging subject. This book offers a fresh approach to a core subject and manages to provide a gentle and clear introduction without sacrificing rigour or accuracy.
## Analysis by Its History

This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.
## Introduction to Calculus and Classical Analysis

Intended for an honors calculus course or for an introduction to analysis, this is an ideal text for undergraduate majors since it covers rigorous analysis, computational dexterity, and a breadth of applications. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by using sequences instead * definition of the integral as the area under the graph, while area is defined for every subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book.
## Introduction to Real Analysis

An accessible introduction to real analysis and its connectionto elementary calculus Bridging the gap between the development and history of realanalysis, Introduction to Real Analysis: An EducationalApproach presents a comprehensive introduction to real analysiswhile also offering a survey of the field. With its balance ofhistorical background, key calculus methods, and hands-onapplications, this book provides readers with a solid foundationand fundamental understanding of real analysis. The book begins with an outline of basic calculus, including aclose examination of problems illustrating links and potentialdifficulties. Next, a fluid introduction to real analysis ispresented, guiding readers through the basic topology of realnumbers, limits, integration, and a series of functions in naturalprogression. The book moves on to analysis with more rigorousinvestigations, and the topology of the line is presented alongwith a discussion of limits and continuity that includes unusualexamples in order to direct readers' thinking beyond intuitivereasoning and on to more complex understanding. The dichotomy ofpointwise and uniform convergence is then addressed and is followedby differentiation and integration. Riemann-Stieltjes integrals andthe Lebesgue measure are also introduced to broaden the presentedperspective. The book concludes with a collection of advancedtopics that are connected to elementary calculus, such as modelingwith logistic functions, numerical quadrature, Fourier series, andspecial functions. Detailed appendices outline key definitions and theorems inelementary calculus and also present additional proofs, projects,and sets in real analysis. Each chapter references historicalsources on real analysis while also providing proof-orientedexercises and examples that facilitate the development ofcomputational skills. In addition, an extensive bibliographyprovides additional resources on the topic. Introduction to Real Analysis: An Educational Approach isan ideal book for upper- undergraduate and graduate-level realanalysis courses in the areas of mathematics and education. It isalso a valuable reference for educators in the field of appliedmathematics.
## A Course in Real Analysis

A Course in Real Analysis provides a rigorous treatment of the foundations of differential and integral calculus at the advanced undergraduate level. The book’s material has been extensively classroom tested in the author’s two-semester undergraduate course on real analysis at The George Washington University. The first part of the text presents the calculus of functions of one variable. This part covers traditional topics, such as sequences, continuity, differentiability, Riemann integrability, numerical series, and the convergence of sequences and series of functions. It also includes optional sections on Stirling’s formula, functions of bounded variation, Riemann–Stieltjes integration, and other topics. The second part focuses on functions of several variables. It introduces the topological ideas (such as compact and connected sets) needed to describe analytical properties of multivariable functions. This part also discusses differentiability and integrability of multivariable functions and develops the theory of differential forms on surfaces in Rn. The third part consists of appendices on set theory and linear algebra as well as solutions to some of the exercises. A full solutions manual offers complete solutions to all exercises for qualifying instructors. With clear proofs, detailed examples, and numerous exercises, this textbook gives a thorough treatment of the subject. It progresses from single variable to multivariable functions, providing a logical development of material that will prepare students for more advanced analysis-based courses.
## Basic Real Analysis

Ideal for the one-semester undergraduate course, Basic Real Analysis is intended for students who have recently completed a traditional calculus course and proves the basic theorems of Single Variable Calculus in a simple and accessible manner. It gradually builds upon key material as to not overwhelm students beginning the course and becomes more rigorous as they progresses. Optional appendices on sets and functions, countable and uncountable sets, and point set topology are included for those instructors who wish include these topics in their course. The author includes hints throughout the text to help students solve challenging problems. An online instructor's solutions manual is also available.
## A First Course in Real Analysis

Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
## The Real Numbers and Real Analysis

This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
## Problems in Real Analysis

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.