A Course in Commutative Algebra

Author: Gregor Kemper
Publisher: Springer Science & Business Media
ISBN: 3642035450
Release Date: 2010-12-02
Genre: Mathematics

This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.

A Course in Homological Algebra

Author: P.J. Hilton
Publisher: Springer Science & Business Media
ISBN: 9781468499360
Release Date: 2013-03-09
Genre: Mathematics

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

Basic Homological Algebra

Author: M. Scott Osborne
Publisher: Springer Science & Business Media
ISBN: 9781461212782
Release Date: 2012-12-06
Genre: Mathematics

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

Relative Homological Algebra

Author: Edgar E. Enochs
Publisher: Walter de Gruyter
ISBN: 9783110215212
Release Date: 2011-10-27
Genre: Mathematics

This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.

Using the Mathematics Literature

Author: Kristine K. Fowler
Publisher: CRC Press
ISBN: 0824750357
Release Date: 2004-05-25
Genre: Language Arts & Disciplines

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.


Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 038795385X
Release Date: 2005-06-21
Genre: Mathematics

This book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first edition: "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."

An Introduction to Algebraic Topology

Author: Joseph J. Rotman
Publisher: Springer Science & Business Media
ISBN: 9781461245766
Release Date: 2013-11-11
Genre: Mathematics

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

Algebraic K Theory and Its Applications

Author: Jonathan Rosenberg
Publisher: Springer Science & Business Media
ISBN: 9781461243144
Release Date: 2012-12-06
Genre: Mathematics

Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.

Jean Leray 99 Conference Proceedings

Author: Maurice de Gosson
Publisher: Springer Science & Business Media
ISBN: 1402013787
Release Date: 2003-05-31
Genre: Mathematics

This volume contains papers presented at the first conference held to honor the memory of, arguably, the greatest mathematician of the twentieth century, Jean Leray. Contributors from all over the world have submitted their work to be included in this unique collection, and it reflects the esteem in which Jean Leray was, and still is held. The book is divided into five parts: hyperbolic systems and equations; symplectic mechanics and geometry; sheaves and spectral sequences; elliptic operators and index theory; and mathematical physics. This volume will appeal to all those who acknowledge the value of Jean Leray's work in general, and students and researchers interested in analysis, topology and geometry, mathematical physics, classical mechanics and fluid mechanics and dynamics in particular.

A Course in the Theory of Groups

Author: Derek J.S. Robinson
Publisher: Springer Science & Business Media
ISBN: 9781441985941
Release Date: 2012-12-06
Genre: Mathematics

"An excellent up-to-date introduction to the theory of groups. It is general yet comprehensive, covering various branches of group theory. The 15 chapters contain the following main topics: free groups and presentations, free products, decompositions, Abelian groups, finite permutation groups, representations of groups, finite and infinite soluble groups, group extensions, generalizations of nilpotent and soluble groups, finiteness properties." —-ACTA SCIENTIARUM MATHEMATICARUM

A First Course of Homological Algebra

Author: D. G. Northcott
Publisher: CUP Archive
ISBN: 0521201969
Release Date: 1973-10-11
Genre: Mathematics

Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

Algebraic Topology

Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 9781461241805
Release Date: 2013-12-01
Genre: Mathematics

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Topics in Combinatorial Group Theory

Author: Gilbert Baumslag
Publisher: Springer Science & Business Media
ISBN: 3764329211
Release Date: 1993-09-01
Genre: Mathematics

Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.

Cohomology of Groups

Author: Kenneth S. Brown
Publisher: Springer Science & Business Media
ISBN: 9781468493276
Release Date: 2012-12-06
Genre: Mathematics

Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.