A Course in Homological Algebra

Author: P.J. Hilton
Publisher: Springer Science & Business Media
ISBN: 9781468499360
Release Date: 2013-03-09
Genre: Mathematics

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

A Course in Commutative Algebra

Author: Gregor Kemper
Publisher: Springer Science & Business Media
ISBN: 3642035450
Release Date: 2010-12-02
Genre: Mathematics

This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.

Basic Homological Algebra

Author: M. Scott Osborne
Publisher: Springer Science & Business Media
ISBN: 9781461212782
Release Date: 2012-12-06
Genre: Mathematics

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

Ma und Kategorie

Author: J.C. Oxtoby
Publisher: Springer-Verlag
ISBN: 9783642960741
Release Date: 2013-03-08
Genre: Mathematics

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

A First Course of Homological Algebra

Author: D. G. Northcott
Publisher: CUP Archive
ISBN: 0521201969
Release Date: 1973-10-11
Genre: Mathematics

Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

Algebra

Author: Jens Carsten Jantzen
Publisher: Springer-Verlag
ISBN: 9783540292876
Release Date: 2006-03-30
Genre: Mathematics

Ausgehend von einer grundlegenden Einführung in Begriffe und Methoden der Algebra werden im Buch die wesentlichen Ergebnisse dargestellt und ein Einblick in viele Entwicklungen innerhalb der Algebra gegeben, die mit anderen Gebieten der Mathematik stark verflochten sind. Beginnend mit Begriffsbildungen wie Gruppe und Ring führt das Buch hin zu den Körpererweiterungen und der Galoistheorie. Danach werden zentrale Teile der Theorie der Moduln, Algebren und Ringe behandelt. Die Theorie der Divisionsalgebren und ihre Klassifikation mit Hilfe der Brauergruppe werden entwickelt. Es schließt sich eine Einführung in die zentralen Begriffe der algebraischen Zahlentheorie an. In zahlreichen Supplementen findet man Ausblicke auf weiterführende Themen. Betrachtet werden zum Beispiel allgemeine lineare Gruppen, Schiefpolynomringe, Erweiterungen von Moduln, projektive Moduln und Frobenius-Algebren.

Lineare Algebra 2

Author: Stefan Waldmann
Publisher: Springer-Verlag
ISBN: 9783662533482
Release Date: 2016-11-17
Genre: Mathematics

In diesem Band des zweiteiligen Lehrbuchs zur Linearen Algebra werden zum einen verschiedene Anwendungen zu den Themen des ersten Bandes vertieft: es wird die Lösungstheorie linearer gewöhnlicher Differentialgleichungen mit konstanten Koeffizienten vorgestellt. Zum anderen werden die formalen Konzepte der linearen Algebra vertieft. Neben Quotientenkonstruktionen und der Theorie der symmetrischen und antisymmetrischen Bilinearformen wird vor allem die multilineare Algebra zusammen mit Tensorprodukten im Detail besprochen. Wie schon im ersten Band ist der Zugang dieses Lehrbuchs eher klassisch: Die formalen Aspekte der wissenschaftlichen Mathematik werden stark betont. Noch stärker als im ersten Band wird jedoch gerade aus den Anwendungen in der mathematischen Physik wichtige Motivation für das Vorgehen gewonnen. Auf diese Weise ist das Lehrbuch sowohl für Studierende der Mathematik als auch der Physik geeignet. Insgesamt über 100 umfangreiche Übungen erleichtern das Selbststudium. Der Inhalt von Band 2: Lineare Differentialgleichungen und die Exponentialabbildung Quotienten Multilineare Abbildungen und Tensorprodukte Bilinearformen und Quadriken Der Autor Stefan Waldmann studierte Physik in Freiburg, wo er 1999 promovierteund 2003 habilitierte. Nach Professuren für Differentialgeometrie inLeuven und harmonische Analysis in Erlangen ist er nun am Institut fürMathematik der Universität Würzburg Inhaber des Lehrstuhls für Mathematische Physik.

Automorphe Formen

Author: Anton Deitmar
Publisher: Springer-Verlag
ISBN: 9783642123900
Release Date: 2010-08-04
Genre: Mathematics

Das Buch bietet eine Einführung in die Theorie der automorphen Formen. Beginnend bei klassischen Modulformen führt der Autor seine Leser hin zur modernen, darstellungstheoretischen Beschreibung von automorphen Formen und ihren L-Funktionen. Das Hauptgewicht legt er auf den Übergang von der klassischen, elementaren Sichtweise zu der modernen, durch die Darstellungstheorie begründete Herangehensweise. Diese Art der Verbindung von klassischer und moderner Sichtweise war in der Lehrbuchliteratur bisher nicht zu finden.

An Introduction to Algebraic Topology

Author: Joseph J. Rotman
Publisher: Springer Science & Business Media
ISBN: 9781461245766
Release Date: 2013-11-11
Genre: Mathematics

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

Algebra

Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 038795385X
Release Date: 2005-06-21
Genre: Mathematics

This book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first edition: "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."

Homological Algebra

Author: S.I. Gelfand
Publisher: Springer Science & Business Media
ISBN: 3540533737
Release Date: 1994-03-29
Genre: Mathematics

This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

Graduate Algebra

Author: Louis Halle Rowen
Publisher: American Mathematical Soc.
ISBN: 0821883976
Release Date: 2008
Genre: Mathematics

This book is an expanded text for a graduate course in commutative algebra, focusing on the algebraic underpinnings of algebraic geometry and of number theory. Accordingly, the theory of affine algebras is featured, treated both directly and via the theory of Noetherian and Artinian modules, and the theory of graded algebras is included to provide the foundation for projective varieties. Major topics include the theory of modules over a principal ideal domain, and its applicationsto matrix theory (including the Jordan decomposition), the Galois theory of field extensions, transcendence degree, the prime spectrum of an algebra, localization, and the classical theory of Noetherian and Artinian rings. Later chapters include some algebraic theory of elliptic curves (featuring theMordell-Weil theorem) and valuation theory, including local fields. One feature of the book is an extension of the text through a series of appendices. This permits the inclusion of more advanced material, such as transcendental field extensions, the discriminant and resultant, the theory of Dedekind domains, and basic theorems of rings of algebraic integers. An extended appendix on derivations includes the Jacobian conjecture and Makar-Limanov's theory of locally nilpotent derivations. Grobnerbases can be found in another appendix. Exercises provide a further extension of the text. The book can be used both as a textbook and as a reference source.

A Basic Course in Algebraic Topology

Author: W.S. Massey
Publisher: Springer Science & Business Media
ISBN: 038797430X
Release Date: 1991-01-01
Genre: Mathematics

This book provides a systematic treatment of the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. It avoids all unnecessary definitions, terminology, and technical machinery. Wherever possible, the book emphasizes the geometric motivation behind the various concepts.

Cohomology of Groups

Author: Kenneth S. Brown
Publisher: Springer Science & Business Media
ISBN: 9781468493276
Release Date: 2012-12-06
Genre: Mathematics

Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.