A First Course in Differential Equations

Author: Dennis Zill
Publisher: Cengage Learning
ISBN: 9780495108245
Release Date: 2008-05-14
Genre: Mathematics

A First Course in Differential Equations with Modeling Applications, 9th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

A First Course in Differential Equations with Modeling Applications

Author: Dennis G. Zill
Publisher: Cengage Learning
ISBN: 9781285401102
Release Date: 2012-03-15
Genre: Mathematics

A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Ordinary Differential Equations

Author: D. Somasundaram
Publisher: CRC Press
ISBN: 0849309883
Release Date: 2001
Genre: Mathematics

Though ordinary differential equations is taught as a core course to students in mathematics and applied mathematics, detailed coverage of the topics with sufficient examples is unique. Written by a mathematics professor and intended as a textbook for third- and fourth-year undergraduates, the five chapters of this publication give a precise account of higher order differential equations, power series solutions, special functions, existence and uniqueness of solutions, and systems of linear equations. Relevant motivation for different concepts in each chapter and discussion of theory and problems-without the omission of steps-sets Ordinary Differential Equations: A First Course apart from other texts on ODEs. Full of distinguishing examples and containing exercises at the end of each chapter, this lucid course book will promote self-study among students.

A First Course in Differential Equations Modeling and Simulation

Author: Carlos A. Smith
Publisher: CRC Press
ISBN: 9781439850879
Release Date: 2011-05-18
Genre: Mathematics

Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.

A First Course in Differential Equations

Author: J. David Logan
Publisher: Springer
ISBN: 9783319178523
Release Date: 2015-07-01
Genre: Mathematics

The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun
Publisher: Springer-Verlag
ISBN: 9783642973413
Release Date: 2013-03-13
Genre: Mathematics

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

A First Course in Differential Equations with Applications

Author: Dennis G. Zill
Publisher:
ISBN: STANFORD:36105031599900
Release Date: 1979
Genre: Differential equations

An introduction to differential equations; First-order differential equations; Applications of first-order differential equations; Linear equations of higher order; Applications of second-order differential equations: vibrational models; Differential equations with variable coefficients; The laplace transform; Linear systems of differencial equations; Numerial methods; Partial differential equations.

A First Course in the Numerical Analysis of Differential Equations

Author: Arieh Iserles
Publisher: Cambridge University Press
ISBN: 0521556554
Release Date: 1996-01-18
Genre: Mathematics

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

A First Course in Differential Equations with Applications

Author: A. H. Siddiqi
Publisher:
ISBN: 140393018X
Release Date: 2006-02-01
Genre: Differential equations

A First Course in Differential Equations with Applications is an introductory text on differential and partial differential equations providing a basic understanding of an impor- tant branch of Applied Mathematics. Placing emphasis on applications, this b

A First Course in Partial Differential Equations

Author: J Robert Buchanan
Publisher: World Scientific Publishing Company
ISBN: 9789813226456
Release Date: 2017-10-30
Genre: Mathematics

Resources for instructors who adopt this textbook:Lecture SlidesInstructors' Manual (complete solutions and supporting work)Students' Manual (final answers to computational exercises) Kindly send your requests to [email protected] This textbook gives an introduction to Partial Differential Equations (PDEs), for any reader wishing to learn and understand the basic concepts, theory, and solution techniques of elementary PDEs. The only prerequisite is an undergraduate course in Ordinary Differential Equations. This work contains a comprehensive treatment of the standard second-order linear PDEs, the heat equation, wave equation, and Laplace's equation. First-order and some common nonlinear PDEs arising in the physical and life sciences, with their solutions, are also covered. This textbook includes an introduction to Fourier series and their properties, an introduction to regular Sturm–Liouville boundary value problems, special functions of mathematical physics, a treatment of nonhomogeneous equations and boundary conditions using methods such as Duhamel's principle, and an introduction to the finite difference technique for the numerical approximation of solutions. All results have been rigorously justified or precise references to justifications in more advanced sources have been cited. Appendices providing a background in complex analysis and linear algebra are also included for readers with limited prior exposure to those subjects. The textbook includes material from which instructors could create a one- or two-semester course in PDEs. Students may also study this material in preparation for a graduate school (masters or doctoral) course in PDEs. The lecture slides, instructors' manual and students' manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]

A First Course in Partial Differential Equations

Author: H. F. Weinberger
Publisher: Courier Corporation
ISBN: 9780486132044
Release Date: 2012-04-20
Genre: Mathematics

Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.