## A Generalized Framework of Linear Multivariable Control

Author: Liansheng Tan
Publisher: Butterworth-Heinemann
ISBN: 9780081019474
Release Date: 2017-02-04
Genre: Science

A Generalized Framework of Linear Multivariable Control proposes a number of generalized models by using the generalized inverse of matrix, while the usual linear multivariable control theory relies on some regular models. The book supports that in H-infinity control, the linear fractional transformation formulation is relying on the inverse of the block matrix. If the block matrix is not regular, the H-infinity control does not apply any more in the normal framework. Therefore, it is very important to relax those restrictions to generalize the classical notions and models to include some non-regular cases. This book is ideal for scholars, academics, professional engineer and students who are interested in control system theory. Presents a comprehensive set of numerical procedures, algorithms, and examples on how to deal with irregular models Provides a summary on generalized framework of linear multivariable control that focuses on generalizations of models and notions Introduces a number of generalized models by using the generalized inverse of matrix

## Trackability and Tracking of General Linear Systems

Author: Lyubomir T. Gruyitch
Publisher: CRC Press
ISBN: 9780429778100
Release Date: 2018-10-31
Genre: Computers

Trackability and Tracking of General Linear Systems deals with five classes of the systems, three of which are new, begins with the definition of time together with a brief description of its crucial properties and with the principles of the physical uniqueness and continuity of physical variables. They are essential for the natural tracking control synthesis. The book presents further new results on the new compact, simple and elegant calculus that enabled the generalization of the transfer function matrix concept and of the state concept, the completion of the trackability and tracking concepts together with the proofs of the trackability and tracking criteria, as well as the natural tracking control synthesis for all five classes of the systems. Features • Crucially broadens the state space concept and the complex domain fundamentals of the dynamical systems to the control systems. • Addresses the knowledge and ability necessary to study and design control systems that will satisfy the fundamental control goal. • Outlines new effective mathematical means for effective complete analysis and synthesis of the control systems. • Upgrades, completes and essentially generalizes the control theory beyond the existing boundaries. • Provides information necessary to create and teach advanced inherently upgraded control courses.

## Linear Robust Control

Author: Michael Green
Publisher: Courier Corporation
ISBN: 9780486488363
Release Date: 2012-09-19
Genre: Science

"Recent years have witnessed enormous strides in the field of robust control of dynamical systems -- unfortunately, many of these developments have only been accessible to a small group of experts. In this text for students and control engineers, the authors examines all of these advances, providing an in-depth and exhaustive examination of modern optimal and robust control. "--

## Process Control

Author: Jean-Pierre Corriou
Publisher: Springer
ISBN: 9783319611433
Release Date: 2017-08-17
Genre: Technology & Engineering

This reference book can be read at different levels, making it a powerful source of information. It presents most of the aspects of control that can help anyone to have a synthetic view of control theory and possible applications, especially concerning process engineering.

## Control Configuration Selection for Multivariable Plants

Author: A. Khaki-Sedigh
Publisher: Springer Science & Business Media
ISBN: 9783642031922
Release Date: 2009-09-23
Genre: Technology & Engineering

Control of multivariable industrial plants and processes has been a challenging and fascinating task for researchers in this field. The analysis and design methodologies for multivariable plants can be categorized as centralized and decentralized design strategies. Despite the remarkable theoretical achievements in centralized multiva- able control, decentralized control is still widely used in many industrial plants. This trend in the beginning of the third millennium is still there and it will be with us for the foreseeable future. This is mainly because of the easy implementation, main- nance, tuning, and robust behavior in the face of fault and model uncertainties, which is reported with the vast number of running decentralized controllers in the industry. The main steps involved in employing decentralized controllers can be summarized as follows: • Control objectives formulation and plant modeling. • Control structure selection. • Controller design. • Simulation or pilot plant experiments and Implementation. Nearly all the textbooks on multivariable control theory deal only with the control system analysis and design. The important concept of control structure selection which is a key prerequisite for a successful industrial control strategy is almost unnoticed. Structure selection involves the following two main steps: • Inputs and outputs selection. • Control configuration selection or the input-output pairing problem. This book focuses on control configuration selection or the input-output pairing problem, which is defined as the procedure of selecting the appropriate input and output pair for the design of SISO (or block) controllers.

## Nonlinear Dynamical Systems and Control

Publisher: Princeton University Press
ISBN: 9781400841042
Release Date: 2011-09-19
Genre: Mathematics

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

## SIAM Journal on Control and Optimization

Author:
Publisher:
ISBN: UCSD:31822036016251
Release Date: 2006
Genre: Control theory

## H infinity Optimization and Robust Multivariable Control

Author: Chengzhi Chu
Publisher:
ISBN: MINN:31951001281854J
Release Date: 1985
Genre:

## International Aerospace Abstracts

Author:
Publisher:
ISBN: STANFORD:36105021091389
Release Date: 1997
Genre: Aeronautics

## Control Theory

Author: James R. Leigh
Publisher: IET
ISBN: 0863413323
Release Date: 2004
Genre: Science

This revised edition addresses recent developments in the field of control theory. It discusses how the rise of 'Hoo' and similar approaches has allowed a combination of practicality, rigour and user interaction to be brought to bear upon complex control problems. The book also covers the rise of AI techniques.

## Chemical Abstracts

Author:
Publisher:
ISBN: UCSD:31822020418513
Release Date: 1990
Genre: Chemistry

9th-10th Collective indexes also include Index of ring systems

## Linear Systems Theory

Author: Ben M. Chen
Publisher: Springer Science & Business Media
ISBN: 0817637796
Release Date: 2004-08-27
Genre: Science

Includes MATLAB-based computational and design algorithms utilizing the "Linear Systems Toolkit." All results and case studies presented in both the continuous- and discrete-time settings.

## Identification of Continuous Time Systems

Author: N.K. Sinha
Publisher: Springer Science & Business Media
ISBN: 0792313364
Release Date: 1991-07-31
Genre: Technology & Engineering

In view of the importance of system identification, the International Federation of Automatic Control (IFAC) and the International Federation of Operational Research Societies (IFORS) hold symposia on this topic every three years. Interest in continuous time approaches to system identification has been growing in recent years. This is evident from the fact that the of invited sessions on continuous time systems has increased from one in the 8th number Symposium that was held in Beijing in 1988 to three in the 9th Symposium in Budapest in 1991. It was during the 8th Symposium in August 1988 that the idea of bringing together important results on the topic of Identification of continuous time systems was conceived. Several distinguished colleagues, who were with us in Beijing at that time, encouraged us by promising on the spot to contribute to a comprehensive volume of collective work. Subsequently, we contacted colleagues all over the world, known for their work in this area, with a formal request to contribute to the proposed volume. The response was prompt and overwhelmingly encouraging. We sincerely thank all the authors for their valuable contributions covering various aspects of identification of continuous time systems.

## Control System Synthesis

Author: Mathukumalli Vidyasagar
Publisher: Morgan & Claypool Publishers
ISBN: 9781608456628
Release Date: 2011-06-01
Genre: Technology & Engineering

This book introduces the so-called "stable factorization approach" to the synthesis of feedback controllers for linear control systems. The key to this approach is to view the multi-input, multi-output (MIMO) plant for which one wishes to design a controller as a matrix over the fraction field F associated with a commutative ring with identity, denoted by R, which also has no divisors of zero. In this setting, the set of single-input, single-output (SISO) stable control systems is precisely the ring R, while the set of stable MIMO control systems is the set of matrices whose elements all belong to R. The set of unstable, meaning not necessarily stable, control systems is then taken to be the field of fractions F associated with R in the SISO case, and the set of matrices with elements in F in the MIMO case. The central notion introduced in the book is that, in most situations of practical interest, every matrix P whose elements belong to F can be "factored" as a "ratio" of two matrices N,D whose elements belong to R, in such a way that N,D are coprime. In the familiar case where the ring R corresponds to the set of bounded-input, bounded-output (BIBO)-stable rational transfer functions, coprimeness is equivalent to two functions not having any common zeros in the closed right half-plane including infinity. However, the notion of coprimeness extends readily to discrete-time systems, distributed-parameter systems in both the continuous- as well as discrete-time domains, and to multi-dimensional systems. Thus the stable factorization approach enables one to capture all these situations within a common framework. The key result in the stable factorization approach is the parametrization of all controllers that stabilize a given plant. It is shown that the set of all stabilizing controllers can be parametrized by a single parameter R, whose elements all belong to R. Moreover, every transfer matrix in the closed-loop system is an affine function of the design parameter R. Thus problems of reliable stabilization, disturbance rejection, robust stabilization etc. can all be formulated in terms of choosing an appropriate R. This is a reprint of the book Control System Synthesis: A Factorization Approach originally published by M.I.T. Press in 1985.