Author: G. B. Folland

Publisher: MAA

ISBN: 0883853434

Release Date: 2009-11-30

Genre: Mathematics

A concise guide to the core material in a graduate level real analysis course.
Skip to content
## A Guide to Advanced Real Analysis

A concise guide to the core material in a graduate level real analysis course.
## A Guide to Advanced Real Analysis

A concise guide to the core material in a graduate level real analysis course.
## A Guide to Advanced Linear Algebra

Linear algebra occupies a central place in modern mathematics. This book provides a rigorous and thorough development of linear algebra at an advanced level, and is directed at graduate students and professional mathematicians. It approaches linear algebra from an algebraic point of view, but its selection of topics is governed not only for their importance in linear algebra itself, but also for their applications throughout mathematics. Students in algebra, analysis, and topology will find much of interest and use to them, and the careful treatment and breadth of subject matter will make this book a valuable reference for mathematicians throughout their professional lives.Topics treated in this book include: vector spaces and linear transformations; dimension counting and applications; representation of linear transformations by matrices; duality; determinants and their uses; rational and especially Jordan canonical form; bilinear forms; inner product spaces; normal linear transformations and the spectral theorem; and an introduction to matrix groups as Lie groups.The book treats vector spaces in full generality, though it concentrates on the finite dimensional case. Also, it treats vector spaces over arbitrary fields, specializing to algebraically closed fields or to the fields of real and complex numbers as necessary.
## A Guide to Groups Rings and Fields

This Guide offers a concise overview of the theory of groups, rings, and fields at the graduate level, emphasizing those aspects that are useful in other parts of mathematics. It focuses on the main ideas and how they hang together. It will be useful to both students and professionals.In addition to the standard material on groups, rings, modules, fields, and Galois theory, the book includes discussions of other important topics that are often omitted in the standard graduate course, including linear groups, group representations, the structure of Artinian rings, projective, injective and flat modules, Dedekind domains, and central simple algebras. All of the important theorems are discussed, without proofs but often with a discussion of the intuitive ideas behind those proofs.Those looking for a way to review and refresh their basic algebra will benefit from reading this Guide, and it will also serve as a ready reference for mathematicians who make use of algebra in their work.
## A Guide to Plane Algebraic Curves

This Guide is a friendly introduction to plane algebraic curves. It emphasizes geometry and intuition, and the presentation is kept concrete. You'll find an abundance of pictures and examples to help develop your intuition about the subject, which is so basic to understanding and asking fruitful questions. Highlights of the elementary theory are covered, which for some could be an end in itself, and for others an invitation to investigate further. Proofs, when given, are mostly sketched, some in more detail, but typically with less. References to texts that provide further discussion are often included. Computer algebra software has made getting around in algebraic geometry much easier. Algebraic curves and geometry are now being applied to areas such as cryptography, complexity and coding theory, robotics, biological networks, and coupled dynamical systems. Algebraic curves were used in Andrew Wiles' proof of Fermat's Last Theorem, and to understand string theory, you need to know some algebraic geometry. There are other areas on the horizon for which the concepts and tools of algebraic curves and geometry hold tantalizing promise. This introduction to algebraic curves will be appropriate for a wide segment of scientists and engineers wanting an entrance to this burgeoning subject.
## A Guide to Topology

This book is an outline of the core material in the standard graduate-level real analysis course. It is intended as a resource for students in such a course as well as others who wish to learn or review the subject. On the abstract level, it covers the theory of measure and integration and the basics of point set topology, functional analysis, and the most important types of function spaces. On the more concrete level, it also deals with the applications of these general theories to analysis on Euclidean space: the Lebesgue integral, Hausdorff measure, convolutions, Fourier series and transforms, and distributions. The relevant definitions and major theorems are stated in detail. Proofs, however, are generally presented only as sketches, in such a way that the key ideas are explained but the technical details are omitted. In this way a large amount of material is presented in a concise and readable form.
## A Course in Abstract Harmonic Analysis Second Edition

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant results and techniques that are of interest in their own right. This book develops the abstract theory along with a well-chosen selection of concrete examples that exemplify the results and show the breadth of their applicability. After a preliminary chapter containing the necessary background material on Banach algebras and spectral theory, the text sets out the general theory of locally compact groups and their unitary representations, followed by a development of the more specific theory of analysis on Abelian groups and compact groups. There is an extensive chapter on the theory of induced representations and its applications, and the book concludes with a more informal exposition on the theory of representations of non-Abelian, non-compact groups. Featuring extensive updates and new examples, the Second Edition: Adds a short section on von Neumann algebras Includes Mark Kac’s simple proof of a restricted form of Wiener’s theorem Explains the relation between SU(2) and SO(3) in terms of quaternions, an elegant method that brings SO(4) into the picture with little effort Discusses representations of the discrete Heisenberg group and its central quotients, illustrating the Mackey machine for regular semi-direct products and the pathological phenomena for nonregular ones A Course in Abstract Harmonic Analysis, Second Edition serves as an entrée to advanced mathematics, presenting the essentials of harmonic analysis on locally compact groups in a concise and accessible form.
## Varieties of Integration

Varieties of Integration explores the critical contributions by Riemann, Darboux, Lebesgue, Henstock, Kurzweil, and Stieltjes to the theory of integration and provides a glimpse of more recent variations of the integral such as those involving operator-valued measures. By the first year of graduate school, a young mathematician will have encountered at least three separate definitions of the integral. The associated integrals are typically studied in isolation with little attention paid to the relationships between them or to the historical issues that motivated their definitions. Varieties of Integration redresses this situation by introducing the Riemann, Darboux, Lebesgue, and gauge integrals in a single volume using a common set of examples. This approach allows the reader to see how the definitions influence proof techniques and computational strategies. Then the properties of the integrals are compared in three major areas: the class of integrable functions, the convergence properties of the integral, and the best form of the Fundamental Theorems of Calculus.
## Problems and Theorems in Linear Algebra

There are a number of very good books available on linear algebra. However, new results in linear algebra appear constantly, as do new, simpler, and better proofs of old results. Many of these results and proofs obtained in the past thirty years are accessible to undergraduate mathematics majors, but are usually ignored by textbooks. In addition, more than a few interesting old results are not covered in many books. In this book, the author provides the basics of linear algebra, with an emphasis on new results and on nonstandard and interesting proofs. The book features about 230 problems with complete solutions. It can serve as a supplementary text for an undergraduate or graduate algebra course.
## A Guide to Functional Analysis

This book is a quick but precise and careful introduction to the subject of functional analysis. It covers the basic topics that can be found in a basic graduate analysis text. But it also covers more sophisticated topics such as spectral theory, convexity, and fixed-point theorems. A special feature of the book is that it contains a great many examples and even some applications. It concludes with a statement and proof of Lomonosov's dramatic result about invariant subspaces.
## Essentials of Topology with Applications

Brings Readers Up to Speed in This Important and Rapidly Growing Area Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories. After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures. Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.
## Analysis On Manifolds

A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.
## A Guide to Complex Variables

A quick and easy-to-use introduction to the key topics in complex variables, for mathematicians and non-mathematicians alike.
## Conics and Cubics

Algebraic curves are the graphs of polynomial equations in two vari 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.
## Real Analysis

Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.