A Practical Guide to the Invariant Calculus

Author: Elizabeth Louise Mansfield
Publisher: Cambridge University Press
ISBN: 9781139487047
Release Date: 2010-04-29
Genre: Mathematics

This book explains recent results in the theory of moving frames that concern the symbolic manipulation of invariants of Lie group actions. In particular, theorems concerning the calculation of generators of algebras of differential invariants, and the relations they satisfy, are discussed in detail. The author demonstrates how new ideas lead to significant progress in two main applications: the solution of invariant ordinary differential equations and the structure of Euler-Lagrange equations and conservation laws of variational problems. The expository language used here is primarily that of undergraduate calculus rather than differential geometry, making the topic more accessible to a student audience. More sophisticated ideas from differential topology and Lie theory are explained from scratch using illustrative examples and exercises. This book is ideal for graduate students and researchers working in differential equations, symbolic computation, applications of Lie groups and, to a lesser extent, differential geometry.

Symmetries and Integrability of Difference Equations

Author: Decio Levi
Publisher: Springer
ISBN: 9783319566665
Release Date: 2017-06-30
Genre: Science

This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.

From Frenet to Cartan The Method of Moving Frames

Author: Jeanne N. Clelland
Publisher: American Mathematical Soc.
ISBN: 9781470429522
Release Date: 2017-03-29
Genre: Differential geometry -- Classical differential geometry -- Affine differential geometry

The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises.

Partial Differential Equation Methods for Image Inpainting

Author: Carola-Bibiane Schönlieb
Publisher: Cambridge University Press
ISBN: 9781316404584
Release Date: 2015-10-26
Genre: Mathematics

This book is concerned with digital image processing techniques that use partial differential equations (PDEs) for the task of image 'inpainting', an artistic term for virtual image restoration or interpolation, whereby missing or occluded parts in images are completed based on information provided by intact parts. Computer graphic designers, artists and photographers have long used manual inpainting to restore damaged paintings or manipulate photographs. Today, mathematicians apply powerful methods based on PDEs to automate this task. This book introduces the mathematical concept of PDEs for virtual image restoration. It gives the full picture, from the first modelling steps originating in Gestalt theory and arts restoration to the analysis of resulting PDE models, numerical realisation and real-world application. This broad approach also gives insight into functional analysis, variational calculus, optimisation and numerical analysis and will appeal to researchers and graduate students in mathematics with an interest in image processing and mathematical analysis.

Theorie der Transformationsgruppen

Author: Sophus Lie
Publisher: American Mathematical Soc.
ISBN: 0828402329
Release Date: 1970-01-01
Genre: Mathematics

Sophus Lie had a tremendous impact in several areas of mathematics. His work centered on understanding continuous transformation groups and showing how these groups supply an organizing principle for different areas of mathematics, including geometry and mechanics. This title presents a treatise on theory of transformation groups.

Grundlagen der Mathematik f r Dummies

Author: Mark Zegarelli
Publisher: John Wiley & Sons
ISBN: 9783527657650
Release Date: 2013-01-07
Genre: Mathematics

Mathematik ist nicht jedermanns Sache, manchmal sind es schon die Grundlagen, die fehlen: Einst gelernt, doch jetzt vergessen. Bruch- und Prozentrechnung, Fl?cheninhalt, Gleichungen, wie funktionierte das noch einmal? Mark Zegarelli erkl?rt es Ihnen, einfach und am?sant und immer schnell auf dem Punkt, hilft er Ihnen Ihre Wissensl?cken zu schlie?en. So verlieren Geometrie und Algebra f?r Sie den Schrecken.

Programmieren mit R

Author: Uwe Ligges
Publisher: Springer-Verlag
ISBN: 9783540267324
Release Date: 2006-03-30
Genre: Mathematics

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.

Finite Elemente

Author: Dietrich Braess
Publisher: Springer-Verlag
ISBN: 9783662072349
Release Date: 2013-04-09
Genre: Mathematics


Algebra f r Einsteiger

Author: Jörg Bewersdorff
Publisher: Springer-Verlag
ISBN: 9783322915627
Release Date: 2013-03-09
Genre: Mathematics

Eine leichtverständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint.

Principia Mathematica

Author: Alfred North Whitehead
Publisher:
ISBN: STANFORD:36105039675058
Release Date: 1984-01
Genre: Logic, Symbolic and mathematical


Hierarchische Matrizen

Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
ISBN: 9783642002212
Release Date: 2009-05-11
Genre: Mathematics

Bei der Diskretisierung von Randwertaufgaben und Integralgleichungen entstehen große, eventuell auch voll besetzte Matrizen. In dem Band stellt der Autor eine neuartige Methode dar, die es erstmals erlaubt, solche Matrizen nicht nur effizient zu speichern, sondern auch alle Matrixoperationen einschließlich der Matrixinversion bzw. der Dreieckszerlegung approximativ durchzuführen. Anwendung findet diese Technik nicht nur bei der Lösung großer Gleichungssysteme, sondern auch bei Matrixgleichungen und der Berechnung von Matrixfunktionen.