A Primer on the Calculus of Variations and Optimal Control Theory

Author: Mike Mesterton-Gibbons
Publisher: American Mathematical Soc.
ISBN: 9780821847725
Release Date: 2009
Genre: Mathematics

The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.

Classical Mechanics with Calculus of Variations and Optimal Control

Author: Mark Levi
Publisher: American Mathematical Soc.
ISBN: 9780821891384
Release Date: 2014-03-07
Genre: Mathematics

This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the "tennis racket paradox"; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this book is suitable for courses from an undergraduate to a beginning graduate level, and for a mixed audience of mathematics, physics and engineering students. Much of the enjoyment of the subject lies in solving almost 200 problems in this book.

Calculus of Variations and Optimal Control Theory

Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 9780691151878
Release Date: 2012
Genre: Mathematics

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

Functional Analysis Calculus of Variations and Optimal Control

Author: Francis Clarke
Publisher: Springer Science & Business Media
ISBN: 9781447148203
Release Date: 2013-02-06
Genre: Mathematics

Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.

Optimal Control and the Calculus of Variations

Author: Enid R. Pinch
Publisher: Oxford University Press
ISBN: 9780198514893
Release Date: 1995
Genre: Literary Criticism

Optimal control is a modern development of the calculus of variations and classical optimization theory. For that reason, this introduction to the theory of optimal control starts by considering the problem of minimizing a function of many variables. It moves through an exposition of the calculus of variations, to the optimal control of systems governed by ordinary differential equations. This approach should enable students to see the essential unity of important areas of mathematics, and also allow optimal control and the Pontryagin maximum principle to be placed in a proper context. A good knowledge of analysis, algebra, and methods is assumed. All the theorems are carefully proved, and there are many worked examples and exercises. Although this book is written for the advanced undergraduate mathematician, engineers and scientists who regularly rely on mathematics will also find it a useful text.

The Calculus of Variations and Optimal Control

Author: George Leitmann
Publisher: Springer Science & Business Media
ISBN: 9781489903334
Release Date: 2013-06-29
Genre: Mathematics

When the Tyrian princess Dido landed on the North African shore of the Mediterranean sea she was welcomed by a local chieftain. He offered her all the land that she could enclose between the shoreline and a rope of knotted cowhide. While the legend does not tell us, we may assume that Princess Dido arrived at the correct solution by stretching the rope into the shape of a circular arc and thereby maximized the area of the land upon which she was to found Carthage. This story of the founding of Carthage is apocryphal. Nonetheless it is probably the first account of a problem of the kind that inspired an entire mathematical discipline, the calculus of variations and its extensions such as the theory of optimal control. This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources; however, those most useful to me have been the books of Oskar Bolza and of George M. Ewing. Part II is devoted to the elementary aspects of the modern extension of the calculus of variations, the theory of optimal control of dynamical systems.

A First Course in the Calculus of Variations

Author: Mark Kot
Publisher: American Mathematical Society
ISBN: 9781470414955
Release Date: 2014-10-06
Genre: Mathematics

This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.

Six Themes on Variation

Author: Steven James Cox
Publisher: American Mathematical Soc.
ISBN: 9780821837207
Release Date: 2004
Genre: Mathematics

The calculus of variations is a beautiful subject with a rich history and with origins in the minimization problems of calculus. Although it is now at the core of many modern mathematical fields, it does not have a well-defined place in most undergraduate mathematics curricula. This volume should nevertheless give the undergraduate reader a sense of its great character and importance. Interesting functionals, such as area or energy, often give rise to problems for which the most natural solution occurs by differentiating a one-parameter family of variations of some function.The critical points of the functional are related to the solutions of the associated Euler-Lagrange equation. These differential equations are at the heart of the calculus of variations and its applications to other subjects. Some of the topics addressed in this book are Morse theory, wave mechanics, minimal surfaces, soap bubbles, and modeling traffic flow. All are readily accessible to advanced undergraduates. This book is derived from a workshop sponsored by Rice University. It is suitable for advanced undergraduates, graduate students and research mathematicians interested in the calculus of variations and its applications to other subjects.

A Primer on Pontryagin s Principle in Optimal Control

Author: I. Michael Ross
ISBN: 0984357114
Release Date: 2015-03-03
Genre: Mathematics

EDITORIAL REVIEW: This book provides a guided tour in introducing optimal control theory from a practitioner's point of view. As in the first edition, Ross takes the contrarian view that it is not necessary to prove Pontryagin's Principle before using it. Using the same philosophy, the second edition expands the ideas over four chapters: In Chapter 1, basic principles related to problem formulation via a structured approach are introduced: What is a state variable? What is a control variable? What is state space? And so on. In Chapter 2, Pontryagin's Principle is introduced using intuitive ideas from everyday life: Like the process of "measuring" a sandwich and how it relates to costates. A vast number of illustrations are used to explain the concepts without going into the minutia of obscure mathematics. Mnemonics are introduced to help a beginner remember the collection of conditions that constitute Pontryagin's Principle. In Chapter 3, several examples are worked out in detail to illustrate a step-by-step process in applying Pontryagin's Principle. Included in this example is Kalman's linear-quadratic optimal control problem. In Chapter 4, a large number of problems from applied mathematics to management science are solved to illustrate how Pontryagin's Principle is used across the disciplines. Included in this chapter are test problems and solutions. The style of the book is easygoing and engaging. The classical calculus of variations is an unnecessary prerequisite for understanding optimal control theory. Ross uses original references to weave an entertaining historical account of various events. Students, particularly beginners, will embark on a minimum-time trajectory to applying Pontryagin's Principle.

Optimal Control Theory and Static Optimization in Economics

Author: Daniel Léonard
Publisher: Cambridge University Press
ISBN: 0521337461
Release Date: 1992-01-31
Genre: Business & Economics

Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This book is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigor. Economic intuition is emphasized, examples and problem sets covering a wide range of applications in economics are provided, theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with the simple formulations and progressing to advanced topics. Optimal control theory is introduced directly, without recourse to the calculus of variations, and the connection with the latter and with dynamic programming is explained in a separate chapter. Also, the book draws the parallel between optimal control theory and static optimization. No previous knowledge of differential equations is required.

Optimization and Approximation

Author: Pablo Pedregal
Publisher: Springer
ISBN: 9783319648439
Release Date: 2017-09-07
Genre: Mathematics

This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

Primer on Optimal Control Theory

Author: Jason L. Speyer
Publisher: SIAM
ISBN: 9780898718560
Release Date: 2010
Genre: Control theory

The performance of a process -- for example, how an aircraft consumes fuel -- can be enhanced when the most effective controls and operating points for the process are determined. This holds true for many physical, economic, biomedical, manufacturing, and engineering processes whose behavior can often be influenced by altering certain parameters or controls to optimize some desired property or output.

Optimization in Function Spaces

Author: Amol Sasane
Publisher: Courier Dover Publications
ISBN: 9780486789453
Release Date: 2016-03-15
Genre: Mathematics

Classroom-tested at the London School of Economics, this original, highly readable text offers numerous examples and exercises as well as detailed solutions. Prerequisites are multivariable calculus and basic linear algebra. 2015 edition.

Optimal Control Systems

Author: D. Subbaram Naidu
Publisher: CRC Press
ISBN: 0849308925
Release Date: 2002-08-27
Genre: Technology & Engineering

The theory of optimal control systems has grown and flourished since the 1960's. Many texts, written on varying levels of sophistication, have been published on the subject. Yet even those purportedly designed for beginners in the field are often riddled with complex theorems, and many treatments fail to include topics that are essential to a thorough grounding in the various aspects of and approaches to optimal control. Optimal Control Systems provides a comprehensive but accessible treatment of the subject with just the right degree of mathematical rigor to be complete but practical. It provides a solid bridge between "traditional" optimization using the calculus of variations and what is called "modern" optimal control. It also treats both continuous-time and discrete-time optimal control systems, giving students a firm grasp on both methods. Among this book's most outstanding features is a summary table that accompanies each topic or problem and includes a statement of the problem with a step-by-step solution. Students will also gain valuable experience in using industry-standard MATLAB and SIMULINK software, including the Control System and Symbolic Math Toolboxes. Diverse applications across fields from power engineering to medicine make a foundation in optimal control systems an essential part of an engineer's background. This clear, streamlined presentation is ideal for a graduate level course on control systems and as a quick reference for working engineers.

An Introduction to Game theoretic Modelling

Author: Mike Mesterton-Gibbons
Publisher: American Mathematical Soc.
ISBN: 9780821819296
Release Date: 2001
Genre: Mathematics

This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.