Abstract Algebra

Author: John A. Beachy
Publisher: Waveland Press
ISBN: 9781478607991
Release Date: 2006-01-05
Genre: Mathematics

Highly regarded by instructors in past editions for its sequencing of topics as well as its concrete approach, slightly slower beginning pace, and extensive set of exercises, the latest edition of Abstract Algebra extends the thrust of the widely used earlier editions as it introduces modern abstract concepts only after a careful study of important examples. Beachy and Blairs clear narrative presentation responds to the needs of inexperienced students who stumble over proof writing, who understand definitions and theorems but cannot do the problems, and who want more examples that tie into their previous experience. The authors introduce chapters by indicating why the material is important and, at the same time, relating the new material to things from the students background and linking the subject matter of the chapter to the broader picture. Instructors will find the latest edition pitched at a suitable level of difficulty and will appreciate its gradual increase in the level of sophistication as the student progresses through the book. Rather than inserting superficial applications at the expense of important mathematical concepts, the Beachy and Blair solid, well-organized treatment motivates the subject with concrete problems from areas that students have previously encountered, namely, the integers and polynomials over the real numbers. Supplementary material for instructors and students available on the books Web site: www.math.niu.edu/~beachy/abstract_algebra/

Introduction to Abstract Algebra

Author: W. Keith Nicholson
Publisher: John Wiley & Sons
ISBN: 9781118135358
Release Date: 2012-03-20
Genre: Mathematics

Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.

Abstract Algebra An Introduction

Author: Thomas W. Hungerford
Publisher: Cengage Learning
ISBN: 9781285414973
Release Date: 2012-07-27
Genre: Mathematics

Abstract Algebra: An Introduction is set apart by its thematic development and organization. The chapters are organized around two themes: arithmetic and congruence. Each theme is developed first for the integers, then for polynomials, and finally for rings and groups. This enables students to see where many abstract concepts come from, why they are important, and how they relate to one another. New to this edition is a groups first option that enables those who prefer to cover groups before rings to do so easily. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120351493
Release Date: 2015-09-11
Genre: Mathematics

Appropriate for undergraduate courses, this third edition has new chapters on Galois Theory and Module Theory, new solved problems and additional exercises in the chapters on group theory, boolean algebra and matrix theory. The text offers a systematic, well-planned, and elegant treatment of the main themes in abstract algebra. It begins with the fundamentals of set theory, basic algebraic structures such as groups and rings, and special classes of rings and domains, and then progresses to extension theory, vector space theory and finally the matrix theory. The boolean algebra by virtue of its relation to abstract algebra also finds a proper place in the development of the text. The students develop an understanding of all the essential results such as the Cayley’s theorem, the Lagrange’s theorem, and the Isomorphism theorem, in a rigorous and precise manner. Sufficient numbers of examples have been worked out in each chapter so that the students can grasp the concepts, the ideas, and the results of structure of algebraic objects in a comprehensive way. The chapter-end exercises are designed to enhance the student’s ability to further explore and interconnect various essential notions. Besides undergraduate students of mathematics, this text is equally useful for the postgraduate students of mathematics.

Advanced Modern Algebra Third Edition Part 2

Author: Joseph J. Rotman
Publisher: American Mathematical Soc.
ISBN: 9781470423117
Release Date: 2017-08-15
Genre: Algebra

This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

Computational Number Theory and Modern Cryptography

Author: Song Y. Yan
Publisher: John Wiley & Sons
ISBN: 9781118188613
Release Date: 2012-11-28
Genre: Computers

The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.

Abstract Algebra

Author: David Steven Dummit
ISBN: 0471452343
Release Date: 2004
Genre: Algebra, Abstract

Widely acclaimed algebra text. This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.


Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 038795385X
Release Date: 2005-06-21
Genre: Mathematics

This book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first edition: "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."


Author: Michael Artin
Publisher: Birkhäuser
ISBN: 3764359382
Release Date: 1998-05-19
Genre: Mathematics

Algebra Abstract and Concrete edition 2 6

Author: Frederick Goodman
Publisher: SemiSimple Press (Frederick Goodman)
ISBN: 9780979914218
Release Date: 2014-01-10
Genre: Mathematics

This text provides a thorough introduction to “modern” or “abstract” algebra at a level suitable for upper-level undergraduates and beginning graduate students. The book addresses the conventional topics: groups, rings, fields, and linear algebra, with symmetry as a unifying theme. This subject matter is central and ubiquitous in modern mathematics and in applications ranging from quantum physics to digital communications. The most important goal of this book is to engage students in the ac- tive practice of mathematics.

Abstract Algebra and Famous Impossibilities

Author: Arthur Jones
Publisher: Springer Science & Business Media
ISBN: 9781441985521
Release Date: 2012-12-06
Genre: Mathematics

The famous problems of squaring the circle, doubling the cube and trisecting an angle captured the imagination of both professional and amateur mathematicians for over two thousand years. Despite the enormous effort and ingenious attempts by these men and women, the problems would not yield to purely geometrical methods. It was only the development. of abstract algebra in the nineteenth century which enabled mathematicians to arrive at the surprising conclusion that these constructions are not possible. In this book we develop enough abstract algebra to prove that these constructions are impossible. Our approach introduces all the relevant concepts about fields in a way which is more concrete than usual and which avoids the use of quotient structures (and even of the Euclidean algorithm for finding the greatest common divisor of two polynomials). Having the geometrical questions as a specific goal provides motivation for the introduction of the algebraic concepts and we have found that students respond very favourably. We have used this text to teach second-year students at La Trobe University over a period of many years, each time refining the material in the light of student performance.

A First Course in Abstract Algebra

Author: Joseph J. Rotman
Publisher: Prentice Hall
ISBN: 0131862677
Release Date: 2006
Genre: Mathematics

This text introduces readers to the algebraic concepts of group and rings, providing a comprehensive discussion of theory as well as a significant number of applications for each. Number Theory: Induction; Binomial Coefficients; Greatest Common Divisors; The Fundamental Theorem of Arithmetic Congruences; Dates and Days. Groups I: Some Set Theory; Permutations; Groups; Subgroups and Lagrange's Theorem; Homomorphisms; Quotient Groups; Group Actions; Counting with Groups.Commutative Rings I: First Properties; Fields; Polynomials; Homomorphisms; Greatest Common Divisors; Unique Factorization; Irreducibility; Quotient Rings and Finite Fields; Officers, Magic, Fertilizer, and Horizons.Linear Algebra: Vector Spaces; Euclidean Constructions; Linear Transformations; Determinants; Codes; Canonical Forms.Fields: Classical Formulas; Insolvability of the General Quintic; Epilog. Groups II: Finite Abelian Groups; The Sylow Theorems; Ornamental Symmetry. Commutative Rings III: Prime Ideals and Maximal Ideals; Unique Factorization; Noetherian Rings; Varieties; Grobner Bases. For all readers interested in abstract algebra.

From Natural Numbers to Quaternions

Author: Jürg Kramer
Publisher: Springer
ISBN: 9783319694290
Release Date: 2017-11-15
Genre: Mathematics

This textbook offers an invitation to modern algebra through number systems of increasing complexity, beginning with the natural numbers and culminating with Hamilton's quaternions. Along the way, the authors carefully develop the necessary concepts and methods from abstract algebra: monoids, groups, rings, fields, and skew fields. Each chapter ends with an appendix discussing related topics from algebra and number theory, including recent developments reflecting the relevance of the material to current research. The present volume is intended for undergraduate courses in abstract algebra or elementary number theory. The inclusion of exercises with solutions also makes it suitable for self-study and accessible to anyone with an interest in modern algebra and number theory.

Introduction to the Galois Correspondence

Author: Maureen H. Fenrick
Publisher: Springer Science & Business Media
ISBN: 9781461217923
Release Date: 2012-12-06
Genre: Mathematics

In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.