Algebraic Geometry and Arithmetic Curves

Author: Qing Liu
Publisher: Oxford University Press
ISBN: 9780191547805
Release Date: 2006-06-29
Genre: Mathematics

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.

Algebraic Geometry and Arithmetic Curves

Author: Qing Liu
Publisher: Oxford University Press on Demand
ISBN: 9780198502845
Release Date: 2002
Genre: Mathematics

'Will be useful to graduate students as an introduction to arithmetic algebraic geometry, and to more advanced readers and experts in the field.' -EMS'This book is unique in the current literature on algebraic and arithmetic geography, therefore a highly welcome addition to it, and particularly suitable for readers who want to approach more specialized works in this field with more ease. The exposition is exceptionally lucid, rigourous, coherent and comprehensive.' -Zentralblatt MATH'A thorough and far-reaching introduction to algebraic geometry in its scheme-theoretic setting... The rich bibliography with nearly 100 references enhances the value of this textbook as a great introduction and source for research.' -Zentralblatt MATHBased on the author's course for first-year graduate students this well-written text explains how the tools of algebraic geometry and of number theory can be applied to a study of curves. The book starts by introducing the essential background material and includes 600 exercises.

Algebraic Geometry and Arithmetic Curves

Author: Qing Liu
Publisher: OUP Oxford
ISBN: 0199202494
Release Date: 2006-06-29
Genre: Mathematics

This new-in-paperback edition provides a general introduction to algebraic and arithmetic geometry, starting with the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves.The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field.Singular curves are treated through a detailed study of the Picard group.The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the fundamental theorem of stable reduction of Deligne-Mumford.This book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are few, and including many examples and approximately 600 exercises, the book is ideal for graduate students.

Algebraic Geometry

Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 9781475738490
Release Date: 2013-06-29
Genre: Mathematics

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Rational Points on Varieties

Author: Bjorn Poonen
Publisher: American Mathematical Soc.
ISBN: 9781470437732
Release Date: 2017-12-13
Genre: Algebraic varieties

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Algebraic Geometry

Author: Ulrich Görtz
Publisher: Springer Science & Business Media
ISBN: 3834897221
Release Date: 2010-08-09
Genre: Mathematics

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.

Riemann Surfaces

Author: Simon Donaldson
Publisher: Oxford University Press
ISBN: 9780198526391
Release Date: 2011-03-24
Genre: Mathematics

An authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view; it pulls together material from global analysis, topology, and algebraic geometry, and covers the essential mathematical methods and tools.

Algebraic Varieties

Author: G. Kempf
Publisher: Cambridge University Press
ISBN: 0521426138
Release Date: 1993-09-09
Genre: Mathematics

An introduction to the theory of algebraic functions on varieties from a sheaf theoretic standpoint.

Arithmetic of L functions

Author: Cristian Popescu
Publisher: American Mathematical Soc.
ISBN: 9780821886984
Release Date: 2011
Genre: Mathematics

The overall theme of the 2009 IAS/PCMI Graduate Summer School was connections between special values of $L$-functions and arithmetic, especially the Birch and Swinnerton-Dyer Conjecture and Stark's Conjecture. These conjectures are introduced and discussed in depth, and progress made over the last 30 years is described. This volume contains the written versions of the graduate courses delivered at the summer school. It would be a suitable text for advanced graduate topics courses on the Birch and Swinnerton-Dyer Conjecture and/or Stark's Conjecture. The book will also serve as a reference volume for experts in the field.

Introduction to Elliptic Curves and Modular Forms

Author: N. Koblitz
Publisher: Springer Science & Business Media
ISBN: 9781468402551
Release Date: 2012-12-06
Genre: Mathematics

This textbook covers the basic properties of elliptic curves and modular forms, with emphasis on certain connections with number theory. The ancient "congruent number problem" is the central motivating example for most of the book. My purpose is to make the subject accessible to those who find it hard to read more advanced or more algebraically oriented treatments. At the same time I want to introduce topics which are at the forefront of current research. Down-to-earth examples are given in the text and exercises, with the aim of making the material readable and interesting to mathematicians in fields far removed from the subject of the book. With numerous exercises (and answers) included, the textbook is also intended for graduate students who have completed the standard first-year courses in real and complex analysis and algebra. Such students would learn applications of techniques from those courses, thereby solidifying their under standing of some basic tools used throughout mathematics. Graduate stu dents wanting to work in number theory or algebraic geometry would get a motivational, example-oriented introduction. In addition, advanced under graduates could use the book for independent study projects, senior theses, and seminar work.

Deformation Theory

Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 9781441915962
Release Date: 2009-11-12
Genre: Mathematics

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.

Algebraic Models in Geometry

Author: Yves Félix
Publisher: Oxford University Press
ISBN: 9780199206513
Release Date: 2008
Genre: Mathematics

In the past century, different branches of mathematics have become more widely separated. Yet, there is an essential unity to mathematics which still springs up in fascinating ways to solve interdisciplinary problems. This text provides a bridge between the subjects of algebraic topology, including differential topology, and geometry. It is a survey book dedicated to a large audience of researchers and graduate students in these areas. Containing a generalintroduction to the algebraic theory of rational homotopy and giving concrete applications of algebraic models to the study of geometrical problems, mathematicians in many areas will find subjects that are of interest to them in the book.

Class Field Theory

Author: Emil Artin
Publisher: American Mathematical Soc.
ISBN: 0821869515
Release Date: 1961
Genre: Mathematics

This classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory ... In this revised edition, two mathematical additions complementing the exposition of the original text are made. The new edition also contains several new footnotes, additional references, and historical comments.

Automorphic Forms

Author: Anton Deitmar
Publisher: Springer Science & Business Media
ISBN: 9781447144359
Release Date: 2012-08-29
Genre: Mathematics

Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.

The Geometry of Moduli Spaces of Sheaves

Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 9781139485821
Release Date: 2010-05-27
Genre: Mathematics

Now back in print, this highly regarded book has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces, which include moduli spaces in positive characteristic, moduli spaces of principal bundles and of complexes, Hilbert schemes of points on surfaces, derived categories of coherent sheaves, and moduli spaces of sheaves on Calabi–Yau threefolds. The authors review changes in the field since the publication of the original edition in 1997 and point the reader towards further literature. References have been brought up to date and errors removed. Developed from the authors' lectures, this book is ideal as a text for graduate students as well as a valuable resource for any mathematician with a background in algebraic geometry who wants to learn more about Grothendieck's approach.