Algebraic Geometry and Arithmetic Curves

Author: Qing Liu
Publisher: Oxford University Press
ISBN: 9780191547805
Release Date: 2006-06-29
Genre: Mathematics

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.

Ranks of Elliptic Curves and Random Matrix Theory

Author: J. B. Conrey
Publisher: Cambridge University Press
ISBN: 9780521699648
Release Date: 2007-02-08
Genre: Mathematics

This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.

Arakelov Geometry

Author: Atsushi Moriwaki
Publisher: American Mathematical Soc.
ISBN: 9781470410742
Release Date: 2014-11-05
Genre: Mathematics

The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.

Quantization Geometry and Noncommutative Structures in Mathematics and Physics

Author: Alexander Cardona
Publisher: Springer
ISBN: 9783319654270
Release Date: 2017-10-26
Genre: Science

This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Einf hrung in die Funktionalanalysis

Author: Reinhold Meise
Publisher: Springer-Verlag
ISBN: 9783322803108
Release Date: 2013-03-07
Genre: Mathematics

Dieses Buch wendet sich an Studenten der Mathematik und der Physik, welche über Grundkenntnisse in Analysis und linearer Algebra verfügen.

Funktionentheorie

Author: Eberhard Freitag
Publisher: Springer-Verlag
ISBN: 9783662073490
Release Date: 2013-03-14
Genre: Mathematics

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebmische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± v'-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + v'-121 + ~2 - v'-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z. B. VI + v'=3 + Vl- v'=3 = v'6. Im Jahre 1777 führte L. EULER die Bezeichnung i = A für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.

Riemann Surfaces

Author: Simon Donaldson
Publisher: Oxford University Press
ISBN: 9780198526391
Release Date: 2011-03-24
Genre: Mathematics

An authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view; it pulls together material from global analysis, topology, and algebraic geometry, and covers the essential mathematical methods and tools.

Stochastic Analysis and Diffusion Processes

Author: Gopinath Kallianpur
Publisher: Oxford University Press
ISBN: 9780199657070
Release Date: 2014
Genre: Mathematics

Beginning with the concept of random processes and Brownian motion and building on the theory and research directions in a self-contained manner, this book provides an introduction to stochastic analysis for graduate students, researchers and applied scientists interested in stochastic processes and their applications.

Der lange Weg zur Freiheit

Author: Nelson Mandela
Publisher: S. Fischer Verlag
ISBN: 9783104031545
Release Date: 2014-01-25
Genre: History

»Ich bin einer von ungezählten Millionen, die durch Nelson Mandelas Leben inspiriert wurden.« Barack Obama Eine fast drei Jahrzehnte währende Gefängnishaft ließ Nelson Mandela zum Mythos der schwarzen Befreiungsbewegung werden. Kaum ein anderer Politiker unserer Zeit symbolisiert heute in solchem Maße die Friedenshoffnungen der Menschheit und den Gedanken der Aussöhnung aller Rassen wie der ehemalige südafrikanische Präsident und Friedensnobelpreisträger. Auch nach seinem Tod finden seine ungebrochene Charakterstärke und Menschenfreundlichkeit die Bewunderung aller friedenswilligen Menschen auf der Welt. Mandelas Lebensgeschichte ist über die politische Bedeutung hinaus ein spannend zu lesendes, kenntnis- und faktenreiches Dokument menschlicher Entwicklung unter Bedingungen und Fährnissen, vor denen die meisten Menschen innerlich wie äußerlich kapituliert haben dürften.

Arithmetic of Algebraic Curves

Author: Serguei A. Stepanov
Publisher: Springer Science & Business Media
ISBN: 0306110369
Release Date: 1994-12-31
Genre: Mathematics

Author S.A. Stepanov thoroughly investigates the current state of the theory of Diophantine equations and its related methods. Discussions focus on arithmetic, algebraic-geometric, and logical aspects of the problem. Designed for students as well as researchers, the book includes over 250 excercises accompanied by hints, instructions, and references. Written in a clear manner, this text does not require readers to have special knowledge of modern methods of algebraic geometry.