Algebraic Topology An Intuitive Approach

Author: Hajime Satō
Publisher: American Mathematical Soc.
ISBN: 0821810464
Release Date: 1999
Genre: Mathematics

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Mobius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.

Graphs Surfaces and Homology

Author: Peter Giblin
Publisher: Cambridge University Press
ISBN: 9781139491174
Release Date: 2010-08-12
Genre: Mathematics

Homology theory is a powerful algebraic tool that is at the centre of current research in topology and its applications. This accessible textbook will appeal to mathematics students interested in the application of algebra to geometrical problems, specifically the study of surfaces (sphere, torus, Mobius band, Klein bottle). In this introduction to simplicial homology - the most easily digested version of homology theory - the author studies interesting geometrical problems, such as the structure of two-dimensional surfaces and the embedding of graphs in surfaces, using the minimum of algebraic machinery and including a version of Lefschetz duality. Assuming very little mathematical knowledge, the book provides a complete account of the algebra needed (abelian groups and presentations), and the development of the material is always carefully explained with proofs given in full detail. Numerous examples and exercises are also included, making this an ideal text for undergraduate courses or for self-study.

C Algebras and Elliptic Operators in Differential Topology

Author: I_U_ri_ Petrovich Solov_‘v Evgeni_ Vadimovich Troit_s_ki_
Publisher: American Mathematical Soc.
ISBN: 0821897934
Release Date: 2000-10-03
Genre:

The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy-invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold. Then the authors present Solovyov's proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology. That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs.

Cohomological Analysis of Partial Differential Equations and Secondary Calculus

Author: A. M. Vinogradov
Publisher: American Mathematical Soc.
ISBN: 0821897993
Release Date: 2001-10-16
Genre:

This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".

Matrix Groups

Author: Andrew Baker
Publisher: Springer Science & Business Media
ISBN: 1852334703
Release Date: 2003-08-20
Genre: Mathematics

This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.

Books in Series

Author:
Publisher:
ISBN: STANFORD:36105015640415
Release Date: 1979
Genre: Monographic series


Hans Freudenthal

Author: Hans Freudenthal
Publisher: European Mathematical Society
ISBN: 3037190582
Release Date: 2009
Genre: Mathematics


Frames and Locales

Author: Jorge Picado
Publisher: Springer Science & Business Media
ISBN: 9783034801546
Release Date: 2011-10-21
Genre: Mathematics

Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.