Algebraic Topology

Author: Hajime Satō
Publisher: American Mathematical Soc.
ISBN: 0821810464
Release Date: 1999
Genre: Mathematics

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Mobius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.

Graphs Surfaces and Homology

Author: Peter Giblin
Publisher: Cambridge University Press
ISBN: 9781139491174
Release Date: 2010-08-12
Genre: Mathematics

Homology theory is a powerful algebraic tool that is at the centre of current research in topology and its applications. This accessible textbook will appeal to mathematics students interested in the application of algebra to geometrical problems, specifically the study of surfaces (sphere, torus, Mobius band, Klein bottle). In this introduction to simplicial homology - the most easily digested version of homology theory - the author studies interesting geometrical problems, such as the structure of two-dimensional surfaces and the embedding of graphs in surfaces, using the minimum of algebraic machinery and including a version of Lefschetz duality. Assuming very little mathematical knowledge, the book provides a complete account of the algebra needed (abelian groups and presentations), and the development of the material is always carefully explained with proofs given in full detail. Numerous examples and exercises are also included, making this an ideal text for undergraduate courses or for self-study.

C Algebras and Elliptic Operators in Differential Topology

Author: I_U_ri_ Petrovich Solov_‘v Evgeni_ Vadimovich Troit_s_ki_
Publisher: American Mathematical Soc.
ISBN: 0821897934
Release Date: 2000-10-03
Genre:

The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy-invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold. Then the authors present Solovyov's proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology. That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs.

Cohomological Analysis of Partial Differential Equations and Secondary Calculus

Author: A. M. Vinogradov
Publisher: American Mathematical Soc.
ISBN: 0821897993
Release Date: 2001-10-16
Genre:

This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".

Matrix Groups

Author: Andrew Baker
Publisher: Springer Science & Business Media
ISBN: 9781447101833
Release Date: 2012-12-06
Genre: Mathematics

This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.

Elements of Homology Theory

Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 9780821838129
Release Date: 2007
Genre: Mathematics

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

Algebraic Topology

Author: Robert M. Switzer
Publisher: Boom Koninklijke Uitgevers
ISBN: 3540427503
Release Date: 2002-01-10
Genre: Mathematics

From the reviews: "The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature... (S.Y. Husseini in Mathematical Reviews, 1976)

Introductory Real Analysis

Author: A. N. Kolmogorov
Publisher: Courier Corporation
ISBN: 9780486134741
Release Date: 2012-04-25
Genre: Mathematics

Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.

Mirror Symmetry

Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 9780821829554
Release Date: 2003
Genre: Mathematics

Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar Vafa invariants. This book aims to give a single, cohesive treatment of mirror symmetry from both the mathematical and physical viewpoint. Parts 1 and 2 develop the necessary mathematical and physical background ``from scratch,'' and are intended for readers trying to learn across disciplines. The treatment is focussed, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topics in mirror symmetry, including the role of D-branes in the context of mirror symmetry, and some of their applications in physics and mathematics: topological strings and large $N$ Chern-Simons theory; geometric engineering; mirror symmetry at higher genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the mirror phenomenon as an equivalence of categories. This book grew out of an intense, month-long course on mirror symmetry at Pine Manor College, sponsored by the Clay Mathematics Institute. The lecturers have tried to summarize this course in a coherent, unified text.

Persistence Theory From Quiver Representations to Data Analysis

Author: Steve Y. Oudot
Publisher: American Mathematical Soc.
ISBN: 9781470434434
Release Date: 2017-05-17
Genre:

Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Dirichlet Branes and Mirror Symmetry

Author:
Publisher: American Mathematical Soc.
ISBN: 9780821838488
Release Date: 2009
Genre: Mathematics

Research in string theory over the last several decades has yielded a rich interaction with algebraic geometry. In 1985, the introduction of Calabi-Yau manifolds into physics as a way to compactify ten-dimensional space-time has led to exciting cross-fertilization between physics and mathematics, especially with the discovery of mirror symmetry in 1989. A new string revolution in the mid-1990s brought the notion of branes to the forefront. As foreseen by Kontsevich, these turned out to have mathematical counterparts in the derived category of coherent sheaves on an algebraic variety and the Fukaya category of a symplectic manifold. This has led to exciting new work, including the Strominger-Yau-Zaslow conjecture, which used the theory of branes to propose a geometric basis for mirror symmetry, the theory of stability conditions on triangulated categories, and a physical basis for the McKay correspondence. These developments have led to a great deal of new mathematical work. One difficulty in understanding all aspects of this work is that it requires being able to speak two different languages, the language of string theory and the language of algebraic geometry. The 2002 Clay School on Geometry and String Theory set out to bridge this gap, and this monograph builds on the expository lectures given there to provide an up-to-date discussion including subsequent developments. A natural sequel to the first Clay monograph on Mirror Symmetry, it presents the new ideas coming out of the interactions of string theory and algebraic geometry in a coherent logical context. We hope it will allow students and researchers who are familiar with the language of one of the two fields to gain acquaintance with the language of the other. The book first introduces the notion of Dirichlet brane in the context of topological quantum field theories, and then reviews the basics of string theory. After showing how notions of branes arose in string theory, it turns to an introduction to the algebraic geometry, sheaf theory, and homological algebra needed to define and work with derived categories. The physical existence conditions for branes are then discussed and compared in the context of mirror symmetry, culminating in Bridgeland's definition of stability structures, and its applications to the McKay correspondence and quantum geometry. The book continues with detailed treatments of the Strominger-Yau-Zaslow conjecture, Calabi-Yau metrics and homological mirror symmetry, and discusses more recent physical developments. This book is suitable for graduate students and researchers with either a physics or mathematics background, who are interested in the interface between string theory and algebraic geometry.

Using the Borsuk Ulam Theorem

Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 9783540766490
Release Date: 2008-01-12
Genre: Mathematics

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.

Monopoles and Three Manifolds

Author: Peter Kronheimer
Publisher: Cambridge University Press
ISBN: 9781139468664
Release Date: 2007-12-20
Genre: Mathematics

Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in three- and four-dimensional geometry and topology. This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg–Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg–Witten equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general three-manifold are then defined and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups and to applications of the theory in topology. Suitable for beginning graduate students and researchers, this book provides a full discussion of a central part of the study of the topology of manifolds.

Directed Algebraic Topology and Concurrency

Author: Lisbeth Fajstrup
Publisher: Springer
ISBN: 9783319153988
Release Date: 2016-03-02
Genre: Computers

This monograph presents an application of concepts and methods from algebraic topology to models of concurrent processes in computer science and their analysis. Taking well-known discrete models for concurrent processes in resource management as a point of departure, the book goes on to refine combinatorial and topological models. In the process, it develops tools and invariants for the new discipline directed algebraic topology, which is driven by fundamental research interests as well as by applications, primarily in the static analysis of concurrent programs. The state space of a concurrent program is described as a higher-dimensional space, the topology of which encodes the essential properties of the system. In order to analyse all possible executions in the state space, more than “just” the topological properties have to be considered: Execution paths need to respect a partial order given by the time flow. As a result, tools and concepts from topology have to be extended to take privileged directions into account. The target audience for this book consists of graduate students, researchers and practitioners in the field, mathematicians and computer scientists alike.