Algorithms of the Intelligent Web

Author: Douglas G McIlwraith
Publisher: Manning Publications
ISBN: 1617292583
Release Date: 2016-09-08
Genre: Computers

Summary Algorithms of the Intelligent Web, Second Edition teaches the most important approaches to algorithmic web data analysis, enabling you to create your own machine learning applications that crunch, munge, and wrangle data collected from users, web applications, sensors and website logs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Valuable insights are buried in the tracks web users leave as they navigate pages and applications. You can uncover them by using intelligent algorithms like the ones that have earned Facebook, Google, and Twitter a place among the giants of web data pattern extraction. About the Book Algorithms of the Intelligent Web, Second Edition teaches you how to create machine learning applications that crunch and wrangle data collected from users, web applications, and website logs. In this totally revised edition, you'll look at intelligent algorithms that extract real value from data. Key machine learning concepts are explained with code examples in Python's scikit-learn. This book guides you through algorithms to capture, store, and structure data streams coming from the web. You'll explore recommendation engines and dive into classification via statistical algorithms, neural networks, and deep learning. What's Inside Introduction to machine learning Extracting structure from data Deep learning and neural networks How recommendation engines work About the Reader Knowledge of Python is assumed. About the Authors Douglas McIlwraith is a machine learning expert and data science practitioner in the field of online advertising. Dr. Haralambos Marmanis is a pioneer in the adoption of machine learning techniques for industrial solutions. Dmitry Babenko designs applications for banking, insurance, and supply-chain management. Foreword by Yike Guo. Table of Contents Building applications for the intelligent web Extracting structure from data: clustering and transforming your data Recommending relevant content Classification: placing things where they belong Case study: click prediction for online advertising Deep learning and neural networks Making the right choice The future of the intelligent web Appendix - Capturing data on the web

ALGORITHMS OF THE INTELLIGENT WEB

Author: Haralambos Marmanis
Publisher:
ISBN: 9350040336
Release Date: 2011-03-01
Genre:

Special Features: Learning Elements:· How to create recommendations just like those on Netflix and Amazon· How to implement Google's Pagerank algorithm· How to discover matches on social-networking sites· How to organize the discussions on your favorite news group· How to select topics of interest from shared bookmarks· How to leverage user clicks· How to categorize emails based on their content· How to build applications that do targeted advertising· How to implement fraud detection About The Book: Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. You'll learn how to build Amazon- and Netflix-style recommendation engines, and how the same techniques apply to people matches on social-networking sites. See how click-trace analysis can result in smarter ad rotations. With a plethora of examples and extensive detail, this book shows you how to build Web 2.0 applications that are as smart as your users.

Algorithms of the Intelligent Web

Author: Haralambos Marmanis
Publisher: Manning Publications
ISBN: UOM:39076002811862
Release Date: 2009
Genre: Computers

Provides information on creating applications that collect, analyze, and act on the data that is left by users on the Web.

The Intelligent Web

Author: Gautam Shroff
Publisher: OUP Oxford
ISBN: 9780191664625
Release Date: 2013-11-28
Genre: Computers

As we use the Web for social networking, shopping, and news, we leave a personal trail. These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of "Web intelligence", as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected. Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.

Data Analytics

Author: Thomas A. Runkler
Publisher: Springer
ISBN: 9783658140755
Release Date: 2016-07-26
Genre: Computers

This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.

Classification and Learning Using Genetic Algorithms

Author: Sanghamitra Bandyopadhyay
Publisher: Springer Science & Business Media
ISBN: 9783540496076
Release Date: 2007-05-17
Genre: Computers

This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.

Programming Collective Intelligence

Author: Toby Segaran
Publisher: "O'Reilly Media, Inc."
ISBN: 9780596550684
Release Date: 2007-08-16
Genre: Computers

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect

Machine Learning Algorithms for Problem Solving in Computational Applications Intelligent Techniques

Author: Kulkarni, Siddhivinayak
Publisher: IGI Global
ISBN: 9781466618343
Release Date: 2012-06-30
Genre: Computers

Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.

Autonomous Intelligent Vehicles

Author: Hong Cheng
Publisher: Springer Science & Business Media
ISBN: 1447122801
Release Date: 2011-11-15
Genre: Computers

This important text/reference presents state-of-the-art research on intelligent vehicles, covering not only topics of object/obstacle detection and recognition, but also aspects of vehicle motion control. With an emphasis on both high-level concepts, and practical detail, the text links theory, algorithms, and issues of hardware and software implementation in intelligent vehicle research. Topics and features: presents a thorough introduction to the development and latest progress in intelligent vehicle research, and proposes a basic framework; provides detection and tracking algorithms for structured and unstructured roads, as well as on-road vehicle detection and tracking algorithms using boosted Gabor features; discusses an approach for multiple sensor-based multiple-object tracking, in addition to an integrated DGPS/IMU positioning approach; examines a vehicle navigation approach using global views; introduces algorithms for lateral and longitudinal vehicle motion control.

Collective Intelligence in Action

Author: Satnam Alag
Publisher: Manning Publications
ISBN: 1933988312
Release Date: 2008
Genre: Computers

Provides information on using a Java-based CI toolkit to mine information to build more effective Web sites.

Intelligent Technologies for Web Applications

Author: Priti Srinivas Sajja
Publisher: CRC Press
ISBN: 9781439871645
Release Date: 2016-04-19
Genre: Computers

The Internet has become an integral part of human life, yet the web still utilizes mundane interfaces to the physical world, which makes Internet operations somewhat mechanical, tedious, and less human-oriented. Filling a large void in the literature, Intelligent Technologies for Web Applications is one of the first books to focus on providing vital fundamental and advanced guidance in the area of Web intelligence for beginners and researchers. The book covers techniques from diverse areas of research, including: Natural language processing Information extraction, retrieval, and filtering Knowledge representation and management Machine learning Databases Data, web, and text mining Human–computer interaction Semantic web technologies To develop effective and intelligent web applications and services, it is critical to discover useful knowledge through analyzing large amounts of content, hidden content structures, or usage patterns of web data resources. Intended to improve and reinforce problem-solving methods in this area, this book delves into the hybridization of artificial intelligence (AI) and web technologies to help simplify complex Web operations. It introduces readers to the state-of-the art development of web intelligence techniques and teaches how to apply these techniques to develop the next generation of intelligent Web applications. The book lays out presented projects, case studies, and innovative ideas, which readers can explore independently as standalone research projects. This material facilitates experimentation with the book’s content by including fundamental tools, research directions, practice questions, and additional reading.

Obstacle Avoidance in Multi Robot Systems

Author: Mark A C Gill
Publisher: World Scientific
ISBN: 9789814496322
Release Date: 1998-06-17
Genre: Computers

Obstacle Avoidance in Multi-robot Systems: Experiments in Parallel Genetic Algorithms offers a novel framework for solving the path planning problem for robot manipulators. Simple and efficient solutions are proposed for the path planning problem based on genetic algorithms. One of the attractive features of genetic algorithms is their ability to solve formidable problems in a robust and straightforward manner. Moreover, genetic algorithms are inherently parallel in nature, which makes them ideal candidates for parallel computing implementations. By combining the robustness of genetic algorithms with the power of parallel computers, this book provides an effective and practical approach to solving path planning problems. The book gives details of implementations that allow a better understanding of the complexities involved in the development of parallel path planning algorithms. The material presented is interdisciplinary in nature — it combines topics from robotics, genetic algorithms, and parallel processing. The book can be used by practitioners and researchers in computer science and engineering. Contents:OverviewParallel ComputingPath PlanningSearch TechniquesInverse KinematicsCollision DetectionCollision AvoidanceExamplesDiscussion, Conclusions and Future Work Readership: Students, practitioners and researchers in computer science and engineering. Keywords:Path Planning;Robotics;Obstacle Avoidance;Multi-Robots;Parallel Algorithms;Genetic Algorithms

Planning Algorithms

Author: Steven M. LaValle
Publisher: Cambridge University Press
ISBN: 9781139455176
Release Date: 2006-05-29
Genre: Computers

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning, but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the 'configuration spaces' of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. This text and reference is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

The Master Algorithm

Author: Pedro Domingos
Publisher: Penguin UK
ISBN: 9780241004555
Release Date: 2015-09-22
Genre: Science

A spell-binding quest for the one algorithm capable of deriving all knowledge from data, including a cure for cancer Society is changing, one learning algorithm at a time, from search engines to online dating, personalized medicine to predicting the stock market. But learning algorithms are not just about Big Data - these algorithms take raw data and make it useful by creating more algorithms. This is something new under the sun: a technology that builds itself. In The Master Algorithm, Pedro Domingos reveals how machine learning is remaking business, politics, science and war. And he takes us on an awe-inspiring quest to find 'The Master Algorithm' - a universal learner capable of deriving all knowledge from data.

Soft Computing for Data Mining Applications

Author: K. R. Venugopal
Publisher: Springer
ISBN: 9783642001932
Release Date: 2009-02-24
Genre: Computers

The authors have consolidated their research work in this volume titled Soft Computing for Data Mining Applications. The monograph gives an insight into the research in the ?elds of Data Mining in combination with Soft Computing methodologies. In these days, the data continues to grow - ponentially. Much of the data is implicitly or explicitly imprecise. Database discovery seeks to discover noteworthy, unrecognized associations between the data items in the existing database. The potential of discovery comes from the realization that alternate contexts may reveal additional valuable information. The rate at which the data is storedis growing at a phenomenal rate. Asaresult,traditionaladhocmixturesofstatisticaltechniquesanddata managementtools are no longer adequate for analyzing this vast collection of data. Severaldomainswherelargevolumesofdataarestoredincentralizedor distributeddatabasesincludesapplicationslikeinelectroniccommerce,bio- formatics, computer security, Web intelligence, intelligent learning database systems,?nance,marketing,healthcare,telecommunications,andother?elds. E?cient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the ca- bility of computers to search huge amounts of data in a fast and e?ective manner. However,the data to be analyzed is imprecise and a?icted with - certainty. In the case of heterogeneous data sources such as text and video, the data might moreover be ambiguous and partly con?icting. Besides, p- terns and relationships of interest are usually approximate. Thus, in order to make the information mining process more robust it requires tolerance toward imprecision, uncertainty and exceptions.