An Introduction to Category Theory

Author: Harold Simmons
Publisher: Cambridge University Press
ISBN: 9781139503327
Release Date: 2011-09-22
Genre: Mathematics

Category theory provides a general conceptual framework that has proved fruitful in subjects as diverse as geometry, topology, theoretical computer science and foundational mathematics. Here is a friendly, easy-to-read textbook that explains the fundamentals at a level suitable for newcomers to the subject. Beginning postgraduate mathematicians will find this book an excellent introduction to all of the basics of category theory. It gives the basic definitions; goes through the various associated gadgetry, such as functors, natural transformations, limits and colimits; and then explains adjunctions. The material is slowly developed using many examples and illustrations to illuminate the concepts explained. Over 200 exercises, with solutions available online, help the reader to access the subject and make the book ideal for self-study. It can also be used as a recommended text for a taught introductory course.

An Introduction to Category Theory

Author: Harold Simmons
Publisher: Cambridge University Press
ISBN: 110701087X
Release Date: 2011-09-22
Genre: Mathematics

Category theory provides a general conceptual framework that has proved fruitful in subjects as diverse as geometry, topology, theoretical computer science and foundational mathematics. Here is a friendly, easy-to-read textbook that explains the fundamentals at a level suitable for newcomers to the subject. Beginning postgraduate mathematicians will find this book an excellent introduction to all of the basics of category theory. It gives the basic definitions; goes through the various associated gadgetry, such as functors, natural transformations, limits and colimits; and then explains adjunctions. The material is slowly developed using many examples and illustrations to illuminate the concepts explained. Over 200 exercises, with solutions available online, help the reader to access the subject and make the book ideal for self-study. It can also be used as a recommended text for a taught introductory course.

An Introduction to Category Theory

Author: Harold Simmons
Publisher:
ISBN: 1139190970
Release Date: 2014-05-14
Genre: Categories (Mathematics)

"As it says on the front cover this book is an introduction to Category Theory. It gives the basic definitions, goes through the various associated gadgetry such as functors, natural transformations, limits and colimits, and then explains adjunctions. This material could be developed in 50 pages or so, but here it takes some 220 pages. That is because there are many examples illustrating the various notions, some rather straightforward, and others with more content. More importantly, there are also over 200 exercises"--

Basic Category Theory

Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 9781107044241
Release Date: 2014-07-24
Genre: Mathematics

A short introduction ideal for students learning category theory for the first time.

An Introduction to the Language of Category Theory

Author: Steven Roman
Publisher: Birkhäuser
ISBN: 9783319419176
Release Date: 2017-01-05
Genre: Mathematics

This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics. The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra. The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions – products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions. Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.

Category Theory for the Sciences

Author: David I. Spivak
Publisher: MIT Press
ISBN: 9780262320535
Release Date: 2014-10-17
Genre: Mathematics

Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs -- categories in disguise. After explaining the "big three" concepts of category theory -- categories, functors, and natural transformations -- the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.

Basic Category Theory for Computer Scientists

Author: Benjamin C. Pierce
Publisher: MIT Press
ISBN: 0262660717
Release Date: 1991
Genre: Computers

Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial * Applications * Further Reading

Category Theory

Author: Steve Awodey
Publisher: OUP Oxford
ISBN: 9780191612558
Release Date: 2010-06-17
Genre: Philosophy

Category theory is a branch of abstract algebra with incredibly diverse applications. This text and reference book is aimed not only at mathematicians, but also researchers and students of computer science, logic, linguistics, cognitive science, philosophy, and any of the other fields in which the ideas are being applied. Containing clear definitions of the essential concepts, illuminated with numerous accessible examples, and providing full proofs of all important propositions and theorems, this book aims to make the basic ideas, theorems, and methods of category theory understandable to this broad readership. Although assuming few mathematical pre-requisites, the standard of mathematical rigour is not compromised. The material covered includes the standard core of categories; functors; natural transformations; equivalence; limits and colimits; functor categories; representables; Yoneda's lemma; adjoints; monads. An extra topic of cartesian closed categories and the lambda-calculus is also provided - a must for computer scientists, logicians and linguists! This Second Edition contains numerous revisions to the original text, including expanding the exposition, revising and elaborating the proofs, providing additional diagrams, correcting typographical errors and, finally, adding an entirely new section on monoidal categories. Nearly a hundred new exercises have also been added, many with solutions, to make the book more useful as a course text and for self-study.

Conceptual Mathematics

Author: F. William Lawvere
Publisher: Cambridge University Press
ISBN: 9780521894852
Release Date: 2009-07-30
Genre: Mathematics

In the last 60 years, the use of the notion of category has led to a remarkable unification and simplification of mathematics. Conceptual Mathematics introduces this tool for the learning, development, and use of mathematics, to beginning students and also to practising mathematical scientists. This book provides a skeleton key that makes explicit some concepts and procedures that are common to all branches of pure and applied mathematics. The treatment does not presuppose knowledge of specific fields, but rather develops, from basic definitions, such elementary categories as discrete dynamical systems and directed graphs; the fundamental ideas are then illuminated by examples in these categories. This second edition provides links with more advanced topics of possible study. In the new appendices and annotated bibliography the reader will find concise introductions to adjoint functors and geometrical structures, as well as sketches of relevant historical developments.

Category Theory in Context

Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 9780486820804
Release Date: 2017-03-09
Genre: Mathematics

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Category Theory and Applications

Author: Marco Grandis
Publisher: World Scientific
ISBN: 9789813231085
Release Date: 2018-01-16
Genre:

Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a deeper understanding of their roots. This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers its basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications. Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications and a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields. Contents: Introduction Categories, Functors and Natural Transformations Limits and Colimits Adjunctions and Monads Applications in Algebra Applications in Topology and Algebraic Topology Applications in Homological Algebra Hints at Higher Dimensional Category Theory References Indices Readership: Graduate students and researchers of mathematics, computer science, physics. Keywords: Category TheoryReview: Key Features: The main notions of Category Theory are presented in a concrete way, starting from examples taken from the elementary part of well-known disciplines: Algebra, Lattice Theory and Topology The theory is developed presenting other examples and some 300 exercises; the latter are endowed with a solution, or a partial solution, or adequate hints Three chapters and some extra sections are devoted to applications

Categories for the Working Mathematician

Author: Saunders MacLane
Publisher: Springer Science & Business Media
ISBN: 9781461298397
Release Date: 2013-11-11
Genre: Mathematics

Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint pair of functors. This appears in many substantially equivalent forms: That of universal construction, that of direct and inverse limit, and that of pairs offunctors with a natural isomorphism between corresponding sets of arrows. All these forms, with their interrelations, are examined in Chapters III to V. The slogan is "Adjoint functors arise everywhere". Alternatively, the fundamental notion of category theory is that of a monoid -a set with a binary operation of multiplication which is associative and which has a unit; a category itself can be regarded as a sort of general ized monoid. Chapters VI and VII explore this notion and its generaliza tions. Its close connection to pairs of adjoint functors illuminates the ideas of universal algebra and culminates in Beck's theorem characterizing categories of algebras; on the other hand, categories with a monoidal structure (given by a tensor product) lead inter alia to the study of more convenient categories of topological spaces.

Axiomatic Method and Category Theory

Author: Andrei Rodin
Publisher: Springer Science & Business Media
ISBN: 9783319004044
Release Date: 2013-10-14
Genre: Philosophy

This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia. The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. Next, the book explores category theory and details how it has revolutionized the notion of the axiomatic method. It considers the question of identity/equality in mathematics as well as examines the received theories of mathematical structuralism. In the end, Rodin presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics. Lawvere's axiomatization of topos theory and Voevodsky's axiomatization of higher homotopy theory exemplify a new way of axiomatic theory building, which goes beyond the classical Hilbert-style Axiomatic Method. The new notion of Axiomatic Method that emerges in categorical logic opens new possibilities for using this method in physics and other natural sciences. This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method.