An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li
Publisher: Springer Science & Business Media
ISBN: 0387498206
Release Date: 2009-03-18
Genre: Mathematics

“The book is outstanding and admirable in many respects. ... is necessary reading for all kinds of readers from undergraduate students to top authorities in the field.” Journal of Symbolic Logic Written by two experts in the field, this is the only comprehensive and unified treatment of the central ideas and applications of Kolmogorov complexity. The book presents a thorough treatment of the subject with a wide range of illustrative applications. Such applications include the randomness of finite objects or infinite sequences, Martin-Loef tests for randomness, information theory, computational learning theory, the complexity of algorithms, and the thermodynamics of computing. It will be ideal for advanced undergraduate students, graduate students, and researchers in computer science, mathematics, cognitive sciences, philosophy, artificial intelligence, statistics, and physics. The book is self-contained in that it contains the basic requirements from mathematics and computer science. Included are also numerous problem sets, comments, source references, and hints to solutions of problems. New topics in this edition include Omega numbers, Kolmogorov–Loveland randomness, universal learning, communication complexity, Kolmogorov's random graphs, time-limited universal distribution, Shannon information and others.

An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li
Publisher: Springer Science & Business Media
ISBN: 0387948686
Release Date: 1997-02-27
Genre: Mathematics

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).

Algorithmic Randomness and Complexity

Author: Rodney G. Downey
Publisher: Springer Science & Business Media
ISBN: 9780387684413
Release Date: 2010-10-29
Genre: Computers

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.

Universal Artificial Intelligence

Author: Marcus Hutter
Publisher: Springer Science & Business Media
ISBN: 9783540268772
Release Date: 2006-01-17
Genre: Computers

Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.

Descriptive Complexity

Author: Neil Immerman
Publisher: Springer Science & Business Media
ISBN: 9781461205395
Release Date: 2012-12-06
Genre: Computers

By virtue of the close relationship between logic and relational databases, it turns out that complexity has important applications to databases such as analyzing the parallel time needed to compute a query, and the analysis of nondeterministic classes. This book is a relatively self-contained introduction to the subject, which includes the necessary background material, as well as numerous examples and exercises.

Kolmogorov Complexity and Algorithmic Randomness

Author: A. Shen
Publisher: American Mathematical Soc.
ISBN: 9781470431822
Release Date: 2017-11-02
Genre: Computational complexity

Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the “Kolmogorov seminar” in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.

Information and Randomness

Author: Cristian S. Calude
Publisher: Springer Science & Business Media
ISBN: 9783662049785
Release Date: 2013-03-09
Genre: Mathematics

The first edition of the monograph Information and Randomness: An Algorithmic Perspective by Crist ian Calude was published in 1994. In my Foreword I said: "The research in algorithmic information theory is already some 30 years old. However, only the recent years have witnessed a really vigorous growth in this area. . . . The present book by Calude fits very well in our series. Much original research is presented. . . making the approach richer in consequences than the classical one. Remarkably, however, the text is so self-contained and coherent that the book may also serve as a textbook. All proofs are given in the book and, thus, it is not necessary to consult other sources for classroom instruction. " The vigorous growth in the study of algorithmic information theory has continued during the past few years, which is clearly visible in the present second edition. Many new results, examples, exercises and open prob lems have been added. The additions include two entirely new chapters: "Computably Enumerable Random Reals" and "Randomness and Incom pleteness". The really comprehensive new bibliography makes the book very valuable for a researcher. The new results about the characterization of computably enumerable random reals, as well as the fascinating Omega Numbers, should contribute much to the value of the book as a textbook. The author has been directly involved in these results that have appeared in the prestigious journals Nature, New Scientist and Pour la Science.

Algorithmic Information Theory

Author: Gregory J. Chaitin
Publisher: Cambridge University Press
ISBN: 0521616042
Release Date: 2004-12-02
Genre: Computers

Chaitin, the inventor of algorithmic information theory, presents in this book the strongest possible version of Gödel's incompleteness theorem, using an information theoretic approach based on the size of computer programs. One half of the book is concerned with studying the halting probability of a universal computer if its program is chosen by tossing a coin. The other half is concerned with encoding the halting probability as an algebraic equation in integers, a so-called exponential diophantine equation.

Advances in Minimum Description Length

Author: Peter D. Grünwald
Publisher: MIT Press
ISBN: 0262072629
Release Date: 2005
Genre: Computers

A source book for state-of-the-art MDL, including an extensive tutorial and recenttheoretical advances and practical applications in fields ranging from bioinformatics topsychology.

Complexity and Approximation

Author: Giorgio Ausiello
Publisher: Springer Science & Business Media
ISBN: 9783642584121
Release Date: 2012-12-06
Genre: Computers

This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.

Computability and Randomness

Author: André Nies
Publisher: OUP Oxford
ISBN: 9780191627880
Release Date: 2012-03-29
Genre: Philosophy

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.

Kolmogorov Complexity and Computational Complexity

Author: Osamu Watanabe
Publisher: Springer Science & Business Media
ISBN: 9783642777356
Release Date: 2012-12-06
Genre: Computers

The mathematical theory of computation has given rise to two important ap proaches to the informal notion of "complexity": Kolmogorov complexity, usu ally a complexity measure for a single object such as a string, a sequence etc., measures the amount of information necessary to describe the object. Compu tational complexity, usually a complexity measure for a set of objects, measures the compuational resources necessary to recognize or produce elements of the set. The relation between these two complexity measures has been considered for more than two decades, and may interesting and deep observations have been obtained. In March 1990, the Symposium on Theory and Application of Minimal Length Encoding was held at Stanford University as a part of the AAAI 1990 Spring Symposium Series. Some sessions of the symposium were dedicated to Kolmogorov complexity and its relations to the computational complexity the ory, and excellent expository talks were given there. Feeling that, due to the importance of the material, some way should be found to share these talks with researchers in the computer science community, I asked the speakers of those sessions to write survey papers based on their talks in the symposium. In response, five speakers from the sessions contributed the papers which appear in this book.

Atmospheric Modeling Data Assimilation and Predictability

Author: Eugenia Kalnay
Publisher: Cambridge University Press
ISBN: 0521796296
Release Date: 2003
Genre: Mathematics

This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.