An Introduction to Statistical Learning

Author: Gareth James
Publisher: Springer Science & Business Media
ISBN: 9781461471387
Release Date: 2013-06-24
Genre: Mathematics

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Statistik Workshop f r Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 9783868993431
Release Date: 2012-05-31
Genre: Computers

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Machine Learning and Data Science

Author: Daniel D. Gutierrez
Publisher: Technics Publications
ISBN: 9781634620987
Release Date: 2015-11-01
Genre: Computers

A practitioner’s tools have a direct impact on the success of his or her work. This book will provide the data scientist with the tools and techniques required to excel with statistical learning methods in the areas of data access, data munging, exploratory data analysis, supervised machine learning, unsupervised machine learning and model evaluation. Machine learning and data science are large disciplines, requiring years of study in order to gain proficiency. This book can be viewed as a set of essential tools we need for a long-term career in the data science field – recommendations are provided for further study in order to build advanced skills in tackling important data problem domains. The R statistical environment was chosen for use in this book. R is a growing phenomenon worldwide, with many data scientists using it exclusively for their project work. All of the code examples for the book are written in R. In addition, many popular R packages and data sets will be used.

An Elementary Introduction to Statistical Learning Theory

Author: Sanjeev Kulkarni
Publisher: John Wiley & Sons
ISBN: 1118023463
Release Date: 2011-06-09
Genre: Mathematics

A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 9783709169445
Release Date: 2013-03-11
Genre: Mathematics

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

An Introduction to Statistical Learning

Author: Robert Harrell
Publisher: Createspace Independent Publishing Platform
ISBN: 1984173103
Release Date: 2017-09-14
Genre:

This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

An Introduction to Statistical Learning

Author: Peter Forrest
Publisher: Createspace Independent Publishing Platform
ISBN: 1979811040
Release Date: 2017-07-04
Genre:

This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Das Ende der Arbeit und ihre Zukunft

Author: Jeremy Rifkin
Publisher: Campus Verlag
ISBN: 9783593400853
Release Date: 2004-03-15
Genre: Political Science

Die Arbeit hat sich im letzten Jahrzehnt weiter verändert. Bereits in 50 Jahren werden weniger als 10 Prozent der Bevölkerung ausreichen, um alle Güter und Dienstleistungen bereitzustellen. Die Konsequenzen für die sozialen Sicherungssysteme sind dramatisch, soziale Konlikte scheinen unvermeidlich. Dass "es nicht mehr genug Arbeit für alle geben wird" erkannte Jeremy Rifkin bereits in seinem Weltbesteller Das Ende der Arbeit - und seine Thesen sind heute aktueller denn je. In der Neuausgabe des in 16 Sprachen übersetzten Bestsellers entwickelt Rifkin seine radikalen Vorschläge weiter und zeigt mit gewohntem wirtschaftlichen und politischen Sachverstand, wie wir verhindern können, dass uns die Arbeit ausgeht. "Rifkins Buch wird uns noch lange beschäftigen." Süddeutsche Zeitung

Inside Big Data

Author: Christian Rudder
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 9783446444607
Release Date: 2016-03-14
Genre: Political Science

In seinem New-York-Times-Bestseller zeigt Christian Rudder erstmals, wie wir von Big Data profitieren können: indem wir menschlichen Überzeugungen und Vorlieben durch die Analyse großer Datenmengen auf die Spur kommen. Der Gründer der Dating-Seite "OkCupid" hat seine anonymisierten Daten danach befragt, was wir mögen, was wir ablehnen, was wir uns insgeheim wünschen, ob unsere politischen Ansichten unsere Partnerbeziehung verändern – und wie rassistisch wir wirklich sind. "Inside Big Data" bedeutet einen Paradigmenwechsel zu einer konstruktiven Datenauswertung, unabhängig von Konzernen wie Google, und verrät uns Erstaunliches darüber, wer wir wirklich sind.

Maschinelles Lernen

Author: Ethem Alpaydin
Publisher: De Gruyter Oldenbourg
ISBN: 3486581147
Release Date: 2008
Genre: Machine learning

Maschinelles Lernen heißt, Computer so zu programmieren, dass ein bestimmtes Leistungskriterium anhand von Beispieldaten und Erfahrungswerten aus der Vergangenheit optimiert wird. Das vorliegende Buch diskutiert diverse Methoden, die ihre Grundlagen in verschiedenen Themenfeldern haben: Statistik, Mustererkennung, neuronale Netze, Künstliche Intelligenz, Signalverarbeitung, Steuerung und Data Mining. In der Vergangenheit verfolgten Forscher verschiedene Wege mit unterschiedlichen Schwerpunkten. Das Anliegen dieses Buches ist es, all diese unterschiedlichen Ansätze zu kombinieren, um eine allumfassende Behandlung der Probleme und ihrer vorgeschlagenen Lösungen zu geben.

Kryptografie verst ndlich

Author: Christof Paar
Publisher: Springer-Verlag
ISBN: 9783662492970
Release Date: 2016-08-23
Genre: Computers

Das Buch gibt eine umfassende Einführung in moderne angewandte Kryptografie. Es behandelt nahezu alle kryptografischen Verfahren mit praktischer Relevanz. Es werden symmetrische Verfahren (DES, AES, PRESENT, Stromchiffren), asymmetrische Verfahren (RSA, Diffie-Hellmann, elliptische Kurven) sowie digitale Signaturen, Hash-Funktionen, Message Authentication Codes sowie Schlüsselaustauschprotokolle vorgestellt. Für alle Krypto-Verfahren werden aktuelle Sicherheitseinschätzungen und Implementierungseigenschaften beschrieben.

The Elements of Statistical Learning

Author: Trevor Hastie
Publisher: Springer Science & Business Media
ISBN: 9780387216065
Release Date: 2013-11-11
Genre: Mathematics

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Introduction to Statistical Relational Learning

Author: Lise Getoor
Publisher: MIT Press
ISBN: 9780262072885
Release Date: 2007
Genre: Computers

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Zahlentheorie

Author: Armin Leutbecher
Publisher: Springer-Verlag
ISBN: 9783642614057
Release Date: 2013-03-08
Genre: Mathematics

Auf der Grundlage der Mathematikkenntnisse des ersten Studienjahres bietet der Autor eine Einführung in die Zahlentheorie mit Schwerpunkt auf der elementaren und algebraischen Zahlentheorie. Das Buch wendet sich auch an Nichtspezialisten, denen es über die Zahlen frühzeitig den Weg in die Algebra öffnet. Angestrebte Ziele sind: Der Satz von Kronecker-Weber zur Krönung der Galois-Theorie, der Minkowskische Gitterpunktsatz, der Dirichletsche Primzahlsatz und die Bewertungstheorie der Körper.