An Introduction to Statistical Modelling

Author: W. J. Krzanowski
Publisher: Wiley
ISBN: 0470711019
Release Date: 2010-06-28
Genre: Mathematics

Statisticians rely heavily on making models of 'causal situations' in order to fully explain and predict events. Modelling therefore plays a vital part in all applications of statistics and is a component of most undergraduate programmes. 'An Introduction to Statistical Modelling' provides a single reference with an applied slant that caters for all three years of a degree course. The book concentrates on core issues and only the most essential mathematical justifications are given in detail. Attention is firmly focused on the statistical aspects of the techniques, in this lively, practical approach.

Introduction to Statistical Modelling

Author: Annette J. Dobson
Publisher: Springer
ISBN: 9781489931740
Release Date: 2013-11-11
Genre: Mathematics

This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.

An Introduction to Statistical Modeling of Extreme Values

Author: Stuart Coles
Publisher: Springer Science & Business Media
ISBN: 9781447136750
Release Date: 2013-11-27
Genre: Mathematics

Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.

An Introduction to Statistical Learning

Author: Gareth James
Publisher: Springer Science & Business Media
ISBN: 9781461471387
Release Date: 2013-06-24
Genre: Mathematics

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Statistical Modelling for Social Researchers

Author: Roger Tarling
Publisher: Routledge
ISBN: 9781134061075
Release Date: 2008-09-16
Genre: Social Science

This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-linear models, multilevel models, latent variable models (factor analysis), path analysis and simultaneous equation models and models for longitudinal data and event histories. An accompanying website hosts the datasets and further exercises in order that the reader may practice developing statistical models. An ideal tool for postgraduate social science students, research students and practicing social researchers in universities, market research, government social research and the voluntary sector.

Statistical Modelling in R

Author: Murray Aitkin
Publisher: OUP Oxford
ISBN: 0199219141
Release Date: 2009-01-29
Genre: Mathematics

A comprehensive treatment of the theory of statistical modelling in R with an emphasis on applications to practical problems and an expanded discussion of statistical theory.

Case Studies in Bayesian Statistical Modelling and Analysis

Author: Clair L. Alston
Publisher: John Wiley & Sons
ISBN: 9781118394328
Release Date: 2012-10-10
Genre: Mathematics

Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.

Statistical Modeling for Biomedical Researchers

Author: William D. Dupont
Publisher: Cambridge University Press
ISBN: 9781139643818
Release Date: 2009-02-12
Genre: Medical

The second edition of this standard text guides biomedical researchers in the selection and use of advanced statistical methods and the presentation of results to clinical colleagues. It assumes no knowledge of mathematics beyond high school level and is accessible to anyone with an introductory background in statistics. The Stata statistical software package is again used to perform the analyses, this time employing the much improved version 10 with its intuitive point and click as well as character-based commands. Topics covered include linear, logistic and Poisson regression, survival analysis, fixed-effects analysis of variance, and repeated-measure analysis of variance. Restricted cubic splines are used to model non-linear relationships. Each method is introduced in its simplest form and then extended to cover more complex situations. An appendix will help the reader select the most appropriate statistical methods for their data. The text makes extensive use of real data sets available at http://biostat.mc.vanderbilt.edu/dupontwd/wddtext/.

Bayesian Statistical Modelling

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 9780470035931
Release Date: 2007-04-04
Genre: Mathematics

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Introduction to Applied Statistics

Author: James K. Lindsey
Publisher: Oxford University Press on Demand
ISBN: 0198528957
Release Date: 2004
Genre: Science

This text is aimed at students in medicine, biology and the social sciences as well as those planning to specialize in applied statistics. It covers the basics of the design and analysis of surveys and experiments and provides an understanding of the basic principles of modeling and inference. Practical advice is provided on how to design a study, collect data, record observations accurately, detect errors, construct appropriate models, and interpret the results. The text contains many illustrative examples and exercises relating statistical principles to research. A companion web site is available with links to data sets, R codes, and an instructor's manual with teaching hints and solutions.

Statistical Modeling and Computation

Author: Dirk P. Kroese
Publisher: Springer Science & Business Media
ISBN: 9781461487753
Release Date: 2013-11-18
Genre: Computers

This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.​

An Introduction to Statistical Signal Processing

Author: Robert M. Gray
Publisher: Cambridge University Press
ISBN: 1139456288
Release Date: 2004-12-02
Genre: Technology & Engineering

This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.

Statistics

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9781118941102
Release Date: 2014-09-23
Genre: Mathematics

"...I know of no better book of its kind..." (Journal of the Royal Statistical Society, Vol 169 (1), January 2006) A revised and updated edition of this bestselling introductory textbook to statistical analysis using the leading free software package R This new edition of a bestselling title offers a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a wide range of disciplines. Step-by-step instructions help the non-statistician to fully understand the methodology. The book covers the full range of statistical techniques likely to be needed to analyse the data from research projects, including elementary material like t--tests and chi--squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. Includes numerous worked examples and exercises within each chapter.

An Introduction to Statistics with Python

Author: Thomas Haslwanter
Publisher: Springer
ISBN: 9783319283166
Release Date: 2016-07-20
Genre: Computers

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

Statistical Modelling with Quantile Functions

Author: Warren Gilchrist
Publisher: CRC Press
ISBN: 1420035916
Release Date: 2000-05-15
Genre: Mathematics

Galton used quantiles more than a hundred years ago in describing data. Tukey and Parzen used them in the 60s and 70s in describing populations. Since then, the authors of many papers, both theoretical and practical, have used various aspects of quantiles in their work. Until now, however, no one put all the ideas together to form what turns out to be a general approach to statistics. Statistical Modelling with Quantile Functions does just that. It systematically examines the entire process of statistical modelling, starting with using the quantile function to define continuous distributions. The author shows that by using this approach, it becomes possible to develop complex distributional models from simple components. A modelling kit can be developed that applies to the whole model - deterministic and stochastic components - and this kit operates by adding, multiplying, and transforming distributions rather than data. Statistical Modelling with Quantile Functions adds a new dimension to the practice of statistical modelling that will be of value to anyone faced with analyzing data. Not intended to replace classical approaches but to supplement them, it will make some of the traditional topics easier and clearer, and help readers build and investigate models for their own practical statistical problems.