Based on a Cal Tech introductory course for advanced undergraduates in applied physics, this text explores a wide range of topics culminating in semiconductor transistors and lasers. 1982 edition.

Author: Paul Herman Ernst Meijer
Publisher: Courier Corporation
ISBN: 0486437981
Release Date: 1962
Genre: Science

Many books explore group theory’s connection with physics, but few of them offer an introductory approach. This text provides upperlevel undergraduate and graduate students with a foundation in problem solving by means of eigenfunction transformation properties. This study focuses on eigenvalue problems in which differential equations or boundaries are unaffected by certain rotations or translations. Its explanation of transformations induced in function space by rotations (or translations) in configuration space has numerous practical applications — not only to quantum mechanics but also to anyother eigenvalue problems, including those of vibrating systems (molecules or lattices) or waveguides. Points of special interest include the development of Schur's lemma, which features a proof illustrated with a symbolic diagram. The text places particular emphasis on the geometric representation of ideas: for instance, the similarity transformation is characterized as a rotation in multidimensional function space and the reduction is described in terms of mutual orthogonal spaces. General references provide suggestions for further study, citing works of particular clarity and readability. New Preface to the Dover Edition. Problems. List of Symbols. References Cited. Systematic Bibliography. 1965 edition.

Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.

This is the third edition of the successful text-reference book that covers computational chemistry. It features changes to the presentation of key concepts and includes revised and new material with several expanded exercises at various levels such as 'harder questions' for those ready to be tested in greater depth - this aspect is absent from other textbooks in the field. Although introductory and assuming no prior knowledge of computational chemistry, it covers the essential aspects of the subject. There are several introductory textbooks on computational chemistry; this one is (as in its previous editions) a unique textbook in the field with copious exercises (and questions) and solutions with discussions. Noteworthy is the fact that it is the only book at the introductory level that shows in detail yet clearly how matrices are used in one important aspect of computational chemistry. It also serves as an essential guide for researchers, and as a reference book. div“/div>

Author: Nouredine Zettili
Publisher: John Wiley & Sons
ISBN: 9780470026786
Release Date: 2009-02-17
Genre: Science

Quantum Mechanics: Concepts and Applications provides a clear, balanced and modern introduction to the subject. Written with the student’s background and ability in mind the book takes an innovative approach to quantum mechanics by combining the essential elements of the theory with the practical applications: it is therefore both a textbook and a problem solving book in one self–contained volume. Carefully structured, the book starts with the experimental basis of quantum mechanics and then discusses its mathematical tools. Subsequent chapters cover the formal foundations of the subject, the exact solutions of the Schrödinger equation for one and three dimensional potentials, time–independent and time–dependent approximation methods, and finally, the theory of scattering. The text is richly illustrated throughout with many worked examples and numerous problems with step–by–step solutions designed to help the reader master the machinery of quantum mechanics. The new edition has been completely updated and a solutions manual is available on request. Suitable for senior undergradutate courses and graduate courses.

Author: M. I. Petrashen
Publisher: Courier Corporation
ISBN: 9780486172729
Release Date: 2013-01-03
Genre: Science

Geared toward postgraduate students, theoretical physicists, and researchers, this advanced text explores the role of modern group-theoretical methods in quantum theory. The authors based their text on a physics course they taught at a prominent Soviet university. Readers will find it a lucid guide to group theory and matrix representations that develops concepts to the level required for applications. The text's main focus rests upon point and space groups, with applications to electronic and vibrational states. Additional topics include continuous rotation groups, permutation groups, and Lorentz groups. A number of problems involve studies of the symmetry properties of the Schroedinger wave function, as well as the explanation of "additional" degeneracy in the Coulomb field and certain subjects in solid-state physics. The text concludes with an instructive account of problems related to the conditions for relativistic invariance in quantum theory.

Graduate-level text develops group theory relevant to physics and chemistry and illustrates their applications to quantum mechanics, with systematic treatment of quantum theory of atoms, molecules, solids. 1964 edition.

Author: Valter Moretti
Publisher: Springer Science & Business Media
ISBN: 9788847028357
Release Date: 2013-04-02
Genre: Mathematics

This book pursues the accurate study of the mathematical foundations of Quantum Theories. It may be considered an introductory text on linear functional analysis with a focus on Hilbert spaces. Specific attention is given to spectral theory features that are relevant in physics. Having left the physical phenomenology in the background, it is the formal and logical aspects of the theory that are privileged. Another not lesser purpose is to collect in one place a number of useful rigorous statements on the mathematical structure of Quantum Mechanics, including some elementary, yet fundamental, results on the Algebraic Formulation of Quantum Theories. In the attempt to reach out to Master's or PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book should benefit established researchers to organise and present the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.

This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.

This book provides a comprehensive treatment of the principles and applications of quantum mechanics with equal emphasis on concept building and problem solving. The book follows an integrated approach to expose the students to applications of quantum mechanics in both physics and chemistry streams. A chapter is devoted to biological applications as well, to evince the interest of the students pursuing courses in Biotechnology and Bioinformatics. Such unique organization of the book makes it suitable for both Quantum Mechanics and Quantum Chemistry courses, where the common areas like molecular structure and spectroscopy are emphasized. The book, in its second edition, continues to serve as an ideal textbook for the first-year postgraduate students of both physics and chemistry as well as for senior undergraduate students pursuing honours courses in these disciplines. It has been thoroughly revised and enlarged with the introduction of a new chapter on “Quantum Statistics and Planck's Law of Black-Body Radiation”, some important sections in various chapters and more worked-out examples. The book helps students learn difficult concepts of quantum mechanics with simpler mathematics and intuitive language, but without sacrificing rigour. It has informal classroom type approach suitable for self-learning. Key Features • Gives about 200 worked-out examples and chapter-end problems with hints and answers related to different areas of modern science including biology. • Highlights important technological developments based on Quantum Mechanics, such as electron microscope, scanning tunnelling microscope, lasers, Raman spectroscopy and Nuclear Magnetic Resonance (NMR). • Provides adequate number of illustrations. • Includes detailed mathematical derivations separately in Appendices for a more rigorous approach.

Author: Yehuda B. Band
Publisher: Academic Press
ISBN: 9780444537874
Release Date: 2013-01-10
Genre: Science

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Group Theory in Quantum Mechanics: An Introduction to its Present Usage introduces the reader to the three main uses of group theory in quantum mechanics: to label energy levels and the corresponding eigenstates; to discuss qualitatively the splitting of energy levels as one starts from an approximate Hamiltonian and adds correction terms; and to aid in the evaluation of matrix elements of all kinds, and in particular to provide general selection rules for the non-zero ones. The theme is to show how all this is achieved by considering the symmetry properties of the Hamiltonian and the way in which these symmetries are reflected in the wave functions. This book is comprised of eight chapters and begins with an overview of the necessary mathematical concepts, including representations and vector spaces and their relevance to quantum mechanics. The uses of symmetry properties and mathematical expression of symmetry operations are also outlined, along with symmetry transformations of the Hamiltonian. The next chapter describes the three uses of group theory, with particular reference to the theory of atomic energy levels and transitions. The following chapters deal with the theory of free atoms and ions; representations of finite groups; the electronic structure and vibrations of molecules; solid state physics; and relativistic quantum mechanics. Nuclear physics is also discussed, with emphasis on the isotopic spin formalism, nuclear forces, and the reactions that arise when the nuclei take part in time-dependent processes. This monograph will be of interest to physicists and mathematicians.

Author: Mark Beck
Publisher: Oxford University Press
ISBN: 9780199798230
Release Date: 2012-07-01
Genre: Science

This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mathematics of a relatively simple system, before moving on to more complicated systems. After describing polarization, the text goes on to describe spin systems, time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydrogen atom, etc.), and perturbation theory. The book also includes chapters which describe material that is frequently absent from undergraduate texts: quantum measurement, entanglement, quantum field theory and quantum information. This material is connected not only to the laboratories described in the text, but also to other recent experiments. Other subjects covered that do not often make their way into undergraduate texts are coherence, complementarity, mixed states, the density operator and coherent states. Supplementary material includes further details about implementing the laboratories, including parts lists and software for running the experiments. Computer simulations of some of the experiments are available as well. A solutions manual for end-of-chapter problems is available to instructors.

Group Theory and its Application to the Quantum Mechanics of Atomic Spectra describes the applications of group theoretical methods to problems of quantum mechanics with particular reference to atomic spectra. The manuscript first takes a look at vectors and matrices, generalizations, and principal axis transformation. Topics include principal axis transformation for unitary and Hermitian matrices; unitary matrices and the scalar product; linear independence of vectors; and real orthogonal and symmetric matrices. The publication also ponders on the elements of quantum mechanics, perturbation theory, and transformation theory and the bases for the statistical interpretation of quantum mechanics. The book discusses abstract group theory and invariant subgroups, including theorems of finite groups, factor group, and isomorphism and homomorphism. The text also reviews the algebra of representation theory, rotation groups, three-dimensional pure rotation group, and characteristics of atomic spectra. Discussions focus on eigenvalues and quantum numbers, spherical harmonics, and representations of the unitary group. The manuscript is a valuable reference for readers interested in the applications of group theoretical methods.