Classical and Multilinear Harmonic Analysis

Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 9780521882453
Release Date: 2013-01-31
Genre: Mathematics

"This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderâon-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderâon's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"--

Elementary Functional Analysis

Author: Marat V. Markin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 9783110614039
Release Date: 2018-10-08
Genre: Mathematics

While there is a plethora of excellent, but mostly "tell-it-all'' books on the subject, this one is intended to take a unique place in what today seems to be a still wide open niche for an introductory text on the basics of functional analysis to be taught within the existing constraints of the standard, for the United States, one-semester graduate curriculum (fifteen weeks with two seventy-five-minute lectures per week). The book consists of seven chapters and an appendix taking the reader from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), through the basics of linear operators and functionals, the three fundamental principles (the Hahn-Banach Theorem, the Uniform Boundedness Principle, the Open Mapping Theorem and its equivalents: the Inverse Mapping and Closed Graph Theorems) with their numerous profound implications and certain interesting applications, to the elements of the duality and reflexivity theory. Chapter 1 outlines some necessary preliminaries, while the Appendix gives a concise discourse on the celebrated Axiom of Choice, its equivalents (the Hausdorff Maximal Principle, Zorn's Lemma, and Zermello's Well-Ordering Principle), and ordered sets. Being designed as a text to be used in a classroom, the book constantly calls for the student's actively mastering the knowledge of the subject matter. It contains 112 Problems, which are indispensable for understanding and moving forward. Many important statements are given as problems, a lot of these are frequently referred to and used in the main body. There are also 376 Exercises throughout the text, including Chapter 1 and the Appendix, which require of the student to prove or verify a statement or an example, fill in necessary details in a proof, or provide an intermediate step or a counterexample. They are also an inherent part of the material. More difficult problems are marked with an asterisk, many problem and exercises being supplied with "existential'' hints. The book is generous on Examples and contains numerous Remarks accompanying every definition and virtually each statement to discuss certain subtleties, raise questions on whether the converse assertions are true, whenever appropriate, or whether the conditions are essential. The prerequisites are set intentionally quite low, the students not being assumed to have taken graduate courses in real or complex analysis and general topology, to make the course accessible and attractive to a wider audience of STEM (science, technology, engineering, and mathematics) graduate students or advanced undergraduates with a solid background in calculus and linear algebra. With proper attention given to applications, plenty of examples, problems, and exercises, this well-designed text is ideal for a one-semester graduate course on the fundamentals of functional analysis for students in mathematics, physics, computer science, and engineering. ContentsPreliminariesMetric SpacesNormed Vector and Banach SpacesInner Product and Hilbert SpacesLinear Operators and FunctionalsThree Fundamental Principles of Linear Functional AnalysisDuality and ReflexivityThe Axiom of Choice and Equivalents

Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups

Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 9781107627857
Release Date: 2014-01-16
Genre: Mathematics

This book presents an introduction to the representation theory of wreath products of finite groups and harmonic analysis on the corresponding homogeneous spaces. The reader will find a detailed description of the theory of induced representations and Clifford theory, focusing on a general formulation of the little group method. This provides essential tools for the determination of all irreducible representations of wreath products of finite groups. The exposition also includes a detailed harmonic analysis of the finite lamplighter groups, the hyperoctahedral groups, and the wreath product of two symmetric groups. This relies on the generalised Johnson scheme, a new construction of finite Gelfand pairs. The exposition is completely self-contained and accessible to anyone with a basic knowledge of representation theory. Plenty of worked examples and several exercises are provided, making this volume an ideal textbook for graduate students. It also represents a useful reference for more experienced researchers.

Nonlinear Inclusions and Hemivariational Inequalities

Author: Stanisław Migórski
Publisher: Springer Science & Business Media
ISBN: 9781461442318
Release Date: 2012-09-18
Genre: Mathematics

This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.

Books in Print

ISBN: STANFORD:36105015915882
Release Date: 1991
Genre: American literature

Forthcoming Books

Author: Rose Arny
ISBN: UOM:39015038905579
Release Date: 1997
Genre: American literature