Applied Geometry for Computer Graphics and CAD

Author: Duncan Marsh
Publisher: Springer Science & Business Media
ISBN: 9781846281099
Release Date: 2006-03-30
Genre: Computers

Focusing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). Over 300 exercises are included, some new to this edition, and many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and useful links.

Applied Geometry for Computer Graphics and CAD

Author: Duncan Marsh
Publisher: Springer Science & Business Media
ISBN: 1852338016
Release Date: 2005-01-03
Genre: Computers

Focussing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). New features in this revised and updated edition include: the application of quaternions to computer graphics animation and orientation; discussions of the main geometric CAD surface operations and constructions: extruded, rotated and swept surfaces; offset surfaces; thickening and shelling; and skin and loft surfaces; an introduction to rendering methods in computer graphics and CAD: colour, illumination models, shading algorithms, silhouettes and shadows. Over 300 exercises are included, many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and links to other useful websites.

Geometric Methods and Applications

Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 9781461301370
Release Date: 2012-12-06
Genre: Mathematics

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.

Mathematics for Computer Graphics

Author: John Vince
Publisher: Springer
ISBN: 9781447173366
Release Date: 2017-08-28
Genre: Computers

John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded fifth edition. The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on vectors, matrix algebra, transforms, interpolation, curves and patches, analytic geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new topic of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there is a chapter on worked examples. Mathematics for Computer Graphics covers all of the key areas of the subject, including: · Number sets · Algebra · Trigonometry · Coordinate systems · Determinants · Vectors · Quaternions · Matrix algebra · Geometric transforms · Interpolation · Curves and surfaces · Analytic geometry · Barycentric coordinates · Geometric algebra · Differential calculus · Integral calculus This fifth edition contains over 120 worked examples and over 320 colour illustrations, which are central to the author’s descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics, giving a fascinating insight into the design of computer graphics software and setting the scene for further reading of more advanced books and technical research papers.

Essential Topology

Author: Martin D. Crossley
Publisher: Springer Science & Business Media
ISBN: 1852337826
Release Date: 2005-01-01
Genre: Mathematics

This thoroughly modern introduction to undergraduate topology brings the most exciting and useful aspects of modern topology to the reader. Containing all the key results of basic topology, this book concentrates on uniting the most interesting aspects of the subject with aspects that are most useful to research. It is suitable for self-study, and will leave the reader both motivated and well prepared for further study.

Sets Logic and Categories

Author: Peter J. Cameron
Publisher: Springer Science & Business Media
ISBN: 9781447105893
Release Date: 2012-12-06
Genre: Mathematics

Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.

Mathematics and Technology

Author: Christiane Rousseau
Publisher: Springer Science & Business Media
ISBN: 9780387692166
Release Date: 2008-10-29
Genre: Mathematics

This book introduces the student to numerous modern applications of mathematics in technology. The authors write with clarity and present the mathematics in a clear and straightforward way making it an interesting and easy book to read. Numerous exercises at the end of every section provide practice and reinforce the material in the chapter. An engaging quality of this book is that the authors also present the mathematical material in a historical context and not just the practical one. Mathematics and Technology is intended for undergraduate students in mathematics, instructors and high school teachers. Additionally, its lack of calculus centricity as well as a clear indication of the more difficult topics and relatively advanced references make it suitable for any curious individual with a decent command of high school math.

Applied Linear Algebra and Matrix Analysis

Author: Thomas S. Shores
Publisher: Springer
ISBN: 9783319747484
Release Date: 2018-05-02
Genre: Mathematics

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

Introduction to Lie Algebras

Author: K. Erdmann
Publisher: Springer Science & Business Media
ISBN: 9781846284908
Release Date: 2006-09-28
Genre: Mathematics

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Basic Linear Algebra

Author: Thomas S. Blyth
Publisher: Springer Science & Business Media
ISBN: 9781447134961
Release Date: 2013-03-14
Genre: Mathematics

Basic Linear Algebra is a text for first year students, working from concrete examples towards abstract theorems, via tutorial-type exercises. The book explains the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations, and complex numbers. Linear equations are treated via Hermite normal forms, which provides a successful and concrete explanation of the notion of linear independence. Another highlight is the connection between linear mappings and matrices, leading to the change of basis theorem which opens the door to the notion of similarity. The authors are well known algebraists with considerable experience of teaching introductory courses on linear algebra to students at St Andrews. This book is based on one previously published by Chapman and Hall, but it has been extensively updated to include further explanatory text and fully worked solutions to the exercises that all 1st year students should be able to answer.

Calculus of One Variable

Author: K.E. Hirst
Publisher: Springer Science & Business Media
ISBN: 9781846282225
Release Date: 2006-01-27
Genre: Mathematics

Adopts a user-friendly approach, with an emphasis on worked examples and exercises, rather than abstract theory The computer algebra and graphical package MAPLE is used to illustrate many of the ideas and provides an additional aid to teaching and learning Supplementary material, including detailed solutions to exercises and MAPLE worksheets, is available via the web

Differential Geometry and Its Applications

Author: John Oprea
Publisher: MAA
ISBN: 0883857480
Release Date: 2007-09-06
Genre: Mathematics

Differential geometry has a long, wonderful history it has found relevance in areas ranging from machinery design of the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole, it mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors, it is also for students in engineering and the sciences. Into the mix of these ideas comes the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only “see” geodesics on surfaces, but they will also see the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. Students will also see how particles move under constraints. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.

Elementary Number Theory

Author: Gareth A. Jones
Publisher: Springer Science & Business Media
ISBN: 9781447106135
Release Date: 2012-12-06
Genre: Mathematics

An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

An Introduction to Modern Mathematical Computing

Author: Jonathan M. Borwein
Publisher: Springer Science & Business Media
ISBN: 9781461442530
Release Date: 2012-08-07
Genre: Mathematics

Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.

Elementary Topics in Differential Geometry

Author: J. A. Thorpe
Publisher: Springer Science & Business Media
ISBN: 9781461261537
Release Date: 2012-12-06
Genre: Mathematics

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.