Approximation Theory and Approximation Practice

Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 161197240X
Release Date: 2013-01-03
Genre: Mathematics

An original and modern treatment of approximation theory for students in applied mathematics. Includes exercises, illustrations and Matlab code.

Approximation Theory and Approximation Practice

Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 9781611972399
Release Date: 2013-01-03
Genre: Mathematics

An original and modern treatment of approximation theory for students in applied mathematics. Includes exercises, illustrations and Matlab code.

Approximation Theory and Methods

Author: M. J. D. Powell
Publisher: Cambridge University Press
ISBN: 0521295149
Release Date: 1981-03-31
Genre: Mathematics

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.

Interpolation and Approximation

Author: Philip J. Davis
Publisher: Courier Corporation
ISBN: 9780486624952
Release Date: 1975
Genre: Mathematics

Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.

Spectral Methods in MATLAB

Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 9780898714654
Release Date: 2000-07-01
Genre: Mathematics

Mathematics of Computing -- Numerical Analysis.

Spectra and Pseudospectra

Author: Lloyd Nicholas Trefethen
Publisher: Princeton University Press
ISBN: 0691119465
Release Date: 2005
Genre: Mathematics

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.

Introduction to Approximation Theory

Author: Elliott Ward Cheney
Publisher: Courier Corporation
ISBN: 0821813749
Release Date: 1982
Genre: Mathematics

This volume contains historical background and discussion of results for each chapter, References, and an Index.

Practical Applied Mathematics

Author: Sam Howison
Publisher: Cambridge University Press
ISBN: 0521842743
Release Date: 2005-03-24
Genre: Mathematics

Drawing from a wide variety of mathematical subjects, this book aims to show how mathematics is realised in practice in the everyday world. Dozens of applications are used to show that applied mathematics is much more than a series of academic calculations. Mathematical topics covered include distributions, ordinary and partial differential equations, and asymptotic methods as well as basics of modelling. The range of applications is similarly varied, from the modelling of hair to piano tuning, egg incubation and traffic flow. The style is informal but not superficial. In addition, the text is supplemented by a large number of exercises and sideline discussions, assisting the reader's grasp of the material. Used either in the classroom by upper-undergraduate students, or as extra reading for any applied mathematician, this book illustrates how the reader's knowledge can be used to describe the world around them.

Chebyshev and Fourier Spectral Methods

Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 9780486141923
Release Date: 2013-06-05
Genre: Mathematics

Completely revised text applies spectral methods to boundary value, eigenvalue, and time-dependent problems, but also covers cardinal functions, matrix-solving methods, coordinate transformations, much more. Includes 7 appendices and over 160 text figures.

Design and Analysis of Approximation Algorithms

Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 9781461417019
Release Date: 2011-11-18
Genre: Mathematics

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.

Mathematics of Approximation

Author: Johan de De Villiers
Publisher: Springer Science & Business Media
ISBN: 9789491216503
Release Date: 2012-06-30
Genre: Mathematics

The approximation of a continuous function by either an algebraic polynomial, a trigonometric polynomial, or a spline, is an important issue in application areas like computer-aided geometric design and signal analysis. This book is an introduction to the mathematical analysis of such approximation, and, with the prerequisites of only calculus and linear algebra, the material is targeted at senior undergraduate level, with a treatment that is both rigorous and self-contained. The topics include polynomial interpolation; Bernstein polynomials and the Weierstrass theorem; best approximations in the general setting of normed linear spaces and inner product spaces; best uniform polynomial approximation; orthogonal polynomials; Newton-Cotes , Gauss and Clenshaw-Curtis quadrature; the Euler-Maclaurin formula ; approximation of periodic functions; the uniform convergence of Fourier series; spline approximation,with an extensive treatment of local spline interpolation,and its application in quadrature. Exercises are provided at the end of each chapter

Model Reduction and Approximation

Author: Peter Benner
Publisher: SIAM
ISBN: 9781611974829
Release Date: 2017-07-06
Genre: Science

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.

Theory and Practice of Finite Elements

Author: Alexandre Ern
Publisher: Springer Science & Business Media
ISBN: 9781475743555
Release Date: 2013-03-09
Genre: Mathematics

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.

Ordinary Differential Equations in Theory and Practice

Author: Robert Mattheij
Publisher: SIAM
ISBN: 9780898715316
Release Date: 1996-01-01
Genre: Mathematics

In order to emphasize the relationships and cohesion between analytical and numerical techniques, Ordinary Differential Equations in Theory and Practice presents a comprehensive and integrated treatment of both aspects in combination with the modeling of relevant problem classes. This text is uniquely geared to provide enough insight into qualitative aspects of ordinary differential equations (ODEs) to offer a thorough account of quantitative methods for approximating solutions numerically, and to acquaint the reader with mathematical modeling, where such ODEs often play a significant role. Although originally published in 1995, the text remains timely and useful to a wide audience. It provides a thorough introduction to ODEs, since it treats not only standard aspects such as existence, uniqueness, stability, one-step methods, multistep methods, and singular perturbations, but also chaotic systems, differential-algebraic systems, and boundary value problems.

Approximation and Modeling with B Splines

Author: Klaus HoÓllig
Publisher: SIAM
ISBN: 9781611972948
Release Date: 2015-07-01
Genre: Mathematics

B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.