Author: M. J. D. Powell
Publisher: Cambridge University Press
ISBN: 0521295149
Release Date: 1981-03-31
Genre: Mathematics

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.

Author: Philip J. Davis
Publisher: Courier Corporation
ISBN: 9780486624952
Release Date: 1975
Genre: Mathematics

Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.

Author: Lloyd Nicholas Trefethen
Publisher: Princeton University Press
ISBN: 0691119465
Release Date: 2005
Genre: Mathematics

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.

Author: Gregory E Fasshauer
Publisher: World Scientific Publishing Company
ISBN: 9789813101579
Release Date: 2007-04-17
Genre: Mathematics

Meshfree approximation methods are a relatively new area of research, and there are only a few books covering it at present. Whereas other works focus almost entirely on theoretical aspects or applications in the engineering field, this book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. The emphasis here is on a hands-on approach that includes MATLAB routines for all basic operations. Meshfree approximation methods, such as radial basis function and moving least squares method, are discussed from a scattered data approximation and partial differential equations point of view. A good balance is supplied between the necessary theory and implementation in terms of many MATLAB programs, with examples and applications to illustrate key points. Used as class notes for graduate courses at Northwestern University, Illinois Institute of Technology, and Vanderbilt University, this book will appeal to both mathematics and engineering graduate students.

Author: George A. Anastassiou
Publisher: Springer Science & Business Media
ISBN: 9781461463931
Release Date: 2014-07-08
Genre: Mathematics

Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at “Applied Mathematics and Approximation Theory 2012,” an international conference held in Ankara, Turkey, May 17-20, 2012. This volume brings together key work from authors in the field covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. The collection will be a useful resource for researchers in applied mathematics, engineering and statistics.

Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 9781461417019
Release Date: 2011-11-18
Genre: Mathematics

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.

Author: Sam Howison
Publisher: Cambridge University Press
ISBN: 0521842743
Release Date: 2005-03-24
Genre: Mathematics

Drawing from a wide variety of mathematical subjects, this book aims to show how mathematics is realised in practice in the everyday world. Dozens of applications are used to show that applied mathematics is much more than a series of academic calculations. Mathematical topics covered include distributions, ordinary and partial differential equations, and asymptotic methods as well as basics of modelling. The range of applications is similarly varied, from the modelling of hair to piano tuning, egg incubation and traffic flow. The style is informal but not superficial. In addition, the text is supplemented by a large number of exercises and sideline discussions, assisting the reader's grasp of the material. Used either in the classroom by upper-undergraduate students, or as extra reading for any applied mathematician, this book illustrates how the reader's knowledge can be used to describe the world around them.

Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 9780486141923
Release Date: 2013-06-05
Genre: Mathematics

Completely revised text applies spectral methods to boundary value, eigenvalue, and time-dependent problems, but also covers cardinal functions, matrix-solving methods, coordinate transformations, much more. Includes 7 appendices and over 160 text figures.

Author: Alexandre Ern
Publisher: Springer Science & Business Media
ISBN: 9781475743555
Release Date: 2013-03-09
Genre: Mathematics

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.