Biologically Inspired Design

Author: Ashok K Goel
Publisher: Springer Science & Business Media
ISBN: 9781447152484
Release Date: 2013-07-16
Genre: Technology & Engineering

From simple cases such as hook and latch attachments found in Velcro to articulated-wing flying vehicles, biology often has been used to inspire many creative design ideas. The scientific challenge now is to transform the paradigm into a repeatable and scalable methodology. Biologically Inspired Design explores computational techniques and tools that can help integrate the method into design practice. With an inspiring foreword from Janine Benyus, Biologically Inspired Design contains a dozen chapters written by some of the leading scholars in the transdisciplinary field of bioinspired design, such as Frank Fish, Julian Vincent and Jeannette Yen from biology, and Amaresk Chakrabarti, Satyandra Gupta and Li Shu from engineering. Based in part on discussions at two workshops sponsored by the United States National Science Foundation, this volume introduces and develops several methods and tools for bioinspired design including: Information-processing theories, Natural language techniques, Knowledge-based tools, and Functional approaches and Pedagogical techniques. By exploring these fundamental theories, techniques and tools for supporting biologically inspired design, this volume provides a comprehensive resource for design practitioners wishing to explore the paradigm, an invaluable guide to design educators interested in teaching the method, and a preliminary reading for design researchers wanting to investigate bioinspired design.

Bio Inspired Computation in Telecommunications

Author: Xin-She Yang
Publisher: Morgan Kaufmann
ISBN: 9780128017432
Release Date: 2015-02-11
Genre: Mathematics

Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

Advances in Biologically Inspired Information Systems

Author: Falko Dressler
Publisher: Springer Science & Business Media
ISBN: 3540726926
Release Date: 2007
Genre: Computers

Technology is taking us to a world where myriads of heavily networked devices interact with the physical world in multiple ways and at multiple scales, from the global Internet down to micro and nano devices. Many of these devices are highly mobile and must adapt to the surrounding environment in a totally unsupervised way. A fundamental research challenge is the design of robust decentralized computing systems that are capable of operating under changing environments and noisy input, and yet exhibit the desired behavior and response time, under constraints such as energy consumption, size, and processing power. Biological systems are able to handle many of these challenges with an elegance and efficiency still far beyond current human artifacts. The goal is to obtain methods on how to engineer technical systems, which have similar high stability and efficiency. With this book, we present a comprehensive overview of the most promising research directions in the area of bio-inspired computing. According to the broad spectrum addressed by the different book chapters, a rich variety of biological principles and their application to ICT systems are presented.

Bio Inspired Artificial Intelligence

Author: Dario Floreano
Publisher: MIT Press
ISBN: 9780262062718
Release Date: 2008-08-22
Genre: Computers

New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence -- to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems -- including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.

Design Computing and Cognition 16

Author: John S. Gero
Publisher: Springer
ISBN: 9783319449890
Release Date: 2016-12-31
Genre: Technology & Engineering

This book gathers the peer-reviewed and revised versions of papers from the Seventh International Conference on Design Computing and Cognition (DCC'16), held at Northwestern University, Evanston (Chicago), USA, from 27–29 June 2016. The material presented here reflects cutting-edge design research with a focus on artificial intelligence, cognitive science and computational theories. The papers are grouped under the following nine headings, describing advances in theory and applications alike and demonstrating the depth and breadth of design computing and design cognition: Design Creativity; Design Cognition - Design Approaches; Design Support; Design Grammars; Design Cognition - Design Behaviors; Design Processes; Design Synthesis; Design Activity and Design Knowledge. The book will be of particular interest to researchers, developers and users of advanced computation in design across all disciplines, and to all readers who need to gain a better understanding of designing.

Bio Inspired Computation and Applications in Image Processing

Author: Xin-She Yang
Publisher: Academic Press
ISBN: 9780128045374
Release Date: 2016-08-09
Genre: Technology & Engineering

Bio-Inspired Computation and Applications in Image Processing summarizes the latest developments in bio-inspired computation in image processing, focusing on nature-inspired algorithms that are linked with deep learning, such as ant colony optimization, particle swarm optimization, and bat and firefly algorithms that have recently emerged in the field. In addition to documenting state-of-the-art developments, this book also discusses future research trends in bio-inspired computation, helping researchers establish new research avenues to pursue. Reviews the latest developments in bio-inspired computation in image processing Focuses on the introduction and analysis of the key bio-inspired methods and techniques Combines theory with real-world applications in image processing Helps solve complex problems in image and signal processing Contains a diverse range of self-contained case studies in real-world applications

Bio Inspired Computing for Information Retrieval Applications

Author: Acharjya, D.P.
Publisher: IGI Global
ISBN: 9781522523765
Release Date: 2017-02-14
Genre: Computers

The growing presence of biologically-inspired processing has caused significant changes in data retrieval. With the ubiquity of these technologies, more effective and streamlined data processing techniques are available. Bio-Inspired Computing for Information Retrieval Applications is a key resource on the latest advances and research regarding current techniques that have evolved from biologically-inspired processes and its application to a variety of problems. Highlighting multidisciplinary studies on data processing, swarm-based clustering, and evolutionary computation, this publication is an ideal reference source for researchers, academics, professionals, students, and practitioners.

Quantitative Biology

Author: Brian Munsky
Publisher: MIT Press
ISBN: 9780262347112
Release Date: 2018-07-27
Genre: Science

An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michal Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienaltowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber

Biologically Inspired Control of Humanoid Robot Arms

Author: Adam Spiers
Publisher: Springer
ISBN: 9783319301600
Release Date: 2016-05-19
Genre: Technology & Engineering

This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniques investigated in this book. The method includes attractive features such as the decoupling of motion into task and posture components. Various developments are made in each of these elements. Simple cost functions inspired by biomechanical “effort” and “discomfort” generate realistic posture motion. Sliding-mode techniques overcome robustness shortcomings for practical implementation. Arm compliance is achieved via a method of model-free adaptive control that also deals with actuator saturation via anti-windup compensation. A neural-network-centered learning-by-observation scheme generates new task motions, based on motion-capture data recorded from human volunteers. In other parts of the book, motion capture is used to test theories of human movement. All developed controllers are applied to the reaching motion of a humanoid robot arm and are demonstrated to be practically realisable. This book is designed to be of interest to those wishing to achieve dynamics-based human-like robot-arm motion in academic research, advanced study or certain industrial environments. The book provides motivations, extensive reviews, research results and detailed explanations. It is not only suited to practising control engineers, but also applicable for general roboticists who wish to develop control systems expertise in this area.

Swarm Intelligence and Bio Inspired Computation

Author: Xin-She Yang
Publisher: Newnes
ISBN: 9780124051775
Release Date: 2013-05-16
Genre: Computers

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. Focuses on the introduction and analysis of key algorithms Includes case studies for real-world applications Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.

Tools for Computational Finance

Author: Rüdiger U. Seydel
Publisher: Springer
ISBN: 9781447173380
Release Date: 2017-08-17
Genre: Mathematics

Computational and numerical methods are used in a number of ways across the field of finance. It is the aim of this book to explain how such methods work in financial engineering. By concentrating on the field of option pricing, a core task of financial engineering and risk analysis, this book explores a wide range of computational tools in a coherent and focused manner and will be of use to anyone working in computational finance. Starting with an introductory chapter that presents the financial and stochastic background, the book goes on to detail computational methods using both stochastic and deterministic approaches. Now in its sixth edition, Tools for Computational Finance has been significantly revised and contains: Several new parts such as a section on extended applications of tree methods, including multidimensional trees, trinomial trees, and the handling of dividends; Additional material in the field of generating normal variates with acceptance-rejection methods, and on Monte Carlo methods; 115 exercises, and more than 100 figures, many in color. Written from the perspective of an applied mathematician, all methods are introduced for immediate and straightforward application. A ‘learning by calculating’ approach is adopted throughout this book, enabling readers to explore several areas of the financial world. Interdisciplinary in nature, this book will appeal to advanced undergraduate and graduate students in mathematics, engineering, and other scientific disciplines as well as professionals in financial engineering.

Human Modeling for Bio Inspired Robotics

Author: Jun Ueda
Publisher: Academic Press
ISBN: 9780128031520
Release Date: 2016-09-02
Genre: Technology & Engineering

Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications Covers background information and fundamental concepts of human modelling Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing

Engineered Biomimicry

Author: Akhlesh Lakhtakia
Publisher: Newnes
ISBN: 9780123914323
Release Date: 2013-05-24
Genre: Science

Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more

Methods in Neuronal Modeling

Author: Christof Koch
Publisher: MIT Press
ISBN: 0262112310
Release Date: 1998
Genre: Medical

This book serves as a handbook of computational methods and techniques for modeling the functional properties of single and groups of nerve cells.