Biomechanics

Author: Y. C. Fung
Publisher: Springer Science & Business Media
ISBN: 9781475717525
Release Date: 2013-06-29
Genre: Medical

The motivation for writing aseries ofbooks on biomechanics is to bring this rapidly developing subject to students of bioengineering, physiology, and mechanics. In the last decade biomechanics has become a recognized disci pline offered in virtually all universities. Yet there is no adequate textbook for instruction; neither is there a treatise with sufficiently broad coverage. A few books bearing the title of biomechanics are too elementary, others are too specialized. I have long feIt a need for a set of books that will inform students of the physiological and medical applications of biomechanics, and at the same time develop their training in mechanics. We cannot assume that all students come to biomechanics already fully trained in fluid and solid mechanics; their knowledge in these subjects has to be developed as the course proceeds. The scheme adopted in the present series is as follows. First, some basic training in mechanics, to a level about equivalent to the first seven chapters of the author's A First Course in Continuum Mechanics (Prentice-Hall,lnc. 1977), is assumed. We then present some essential parts of biomechanics from the point of view of bioengineering, physiology, and medical applications. In the meantime, mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook. The instructor may fil1 a dual role: teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.

Biomechanics

Author: Y.C. Fung
Publisher: Springer Science & Business Media
ISBN: 9781441968562
Release Date: 2013-03-20
Genre: Science

Biomechanics aims to explain the mechanics oflife and living. From molecules to organisms, everything must obey the laws of mechanics. Clarification of mechanics clarifies many things. Biomechanics helps us to appreciate life. It sensitizes us to observe nature. It is a tool for design and invention of devices to improve the quality of life. It is a useful tool, a simple tool, a valuable tool, an unavoidable tool. It is a necessary part of biology and engineering. The method of biomechanics is the method of engineering, which consists of observation, experimentation, theorization, validation, and application. To understand any object, we must know its geometry and materials of construc tion, the mechanical properties of the materials involved, the governing natural laws, the mathematical formulation of specific problems and their solutions, and the results of validation. Once understood, one goes on to develop applications. In my plan to present an outline of biomechanics, I followed the engineering approach and used three volumes. In the first volume, Biomechanics: Mechanical Properties of Living Tissues, the geometrical struc ture and the rheological properties of various materials, tissues, and organs are presented. In the second volume, Biodynamics: Circulation, the physiology of blood circulation is analyzed by the engineering method.

Biomechanics

Author: Y.C. Fung
Publisher: Springer Science & Business Media
ISBN: 9781475726961
Release Date: 2013-04-17
Genre: Science

The theory of blood circulation is the oldest and most advanced branch of biomechanics, with roots extending back to Huangti and Aristotle, and with contributions from Galileo, Santori, Descartes, Borelli, Harvey, Euler, Hales, Poiseuille, Helmholtz, and many others. It represents a major part of humanity's concept of itself. This book presents selected topics of this great body of ideas from a historical perspective, binding important experiments together with mathematical threads. The objectives and scope of this book remain the same as in the first edition: to present a treatment of circulatory biomechanics from the stand points of engineering, physiology, and medical science, and to develop the subject through a sequence of problems and examples. The name is changed from Biodynamics: Circulation to Biomechanics: Circulation to unify the book with its sister volumes, Biomechanics: Mechanical Properties of Living Tissues, and Biomechanics: Motion, Flow, Stress, and Growth. The major changes made in the new edition are the following: When the first edition went to press in 1984, the question of residual stress in the heart was raised for the first time, and the lung was the only organ analyzed on the basis of solid morphologic data and constitutive equations. The detailed analysis of blood flow in the lung had been done, but the physiological validation experiments had not yet been completed.

Cardiovascular Solid Mechanics

Author: Jay D. Humphrey
Publisher: Springer Science & Business Media
ISBN: 9780387215761
Release Date: 2013-06-29
Genre: Science

This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.

Tissue Mechanics

Author: Stephen C. Cowin
Publisher: Springer Science & Business Media
ISBN: 9780387499857
Release Date: 2007-12-22
Genre: Technology & Engineering

The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.

Biodynamics

Author: Y. C. Fung
Publisher: Springer Science & Business Media
ISBN: 9781475738841
Release Date: 2013-04-18
Genre: Science

This book is a continuation ofmy Biomechanics.The first volume deals with the mechanical properties of living tissues. The present volume deals with the mechanics ofcirculation. A third volume willdeal with respiration, fluid balance, locomotion, growth, and strength. This volume is called Bio dynamics in order to distinguish it from the first volume. The same style is followed. My objective is to present the mechanical aspects ofphysiology in precise terms ofmechanics so that the subject can become as lucid as physics. The motivation of writing this series of books is, as I have said in the preface to the first volume, to bring biomechanics to students ofbioengineer ing, physiology, medicine, and mechanics. I have long felt a need for a set of books that willinform the students ofthe physiological and medical applica tions ofbiomechanics,and at the same time develop their training in mechan ics. In writing these books I have assumed that the reader already has some basic training in mechanics, to a level about equivalent to the first seven chapters of my First Course in Continuum Mechanics (Prentice Hall, 1977). The subject is then presented from the point of view of life science while mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook.The instructor may filla dual role :teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.

The World of Nano Biomechanics

Author: Atsushi Ikai
Publisher: Elsevier
ISBN: 0080556043
Release Date: 2007-11-02
Genre: Science

By using nanotechnological methods, we can now poke around protein molecules, genes, membranes, cells and more. Observation of such entities through optical and electron microscopes tempt us to touch and manipulate them. It is now possible to do so, and scientists around the world have started pulling, pushing and cutting small structures at the base of life processes to understand the effect of our hand work. The book describes the physical properties of such life supporting structures from the molecular level with a special emphasis on their designs based on the mechanical strength and flexibility, membrane and other biological nanostructures. - Describes the basic mechanical features of proteins, DNA, cell membrane and other biological nanostructures - Explains the basic concepts and mathematics of elementary mechanics needed to understand and perform experimental work

Biomechanics of Living Organs

Author: Yohan Payan
Publisher: World Bank Publications
ISBN: 9780128040607
Release Date: 2017-05-01
Genre: Technology & Engineering

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions

Fundamentals of Biomechanics

Author: Nihat Özkaya
Publisher: Springer
ISBN: 9783319447384
Release Date: 2016-12-24
Genre: Medical

This textbook integrates the classic fields of mechanics—statics, dynamics, and strength of materials—using examples from biology and medicine. The book is excellent for teaching either undergraduates in biomedical engineering programs or health care professionals studying biomechanics at the graduate level. Extensively revised from a successful third edition, Fundamentals of Biomechanics features a wealth of clear illustrations, numerous worked examples, and many problem sets. The book provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics. It will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine. This book: Introduces the fundamental concepts, principles, and methods that must be understood to begin the study of biomechanics Reinforces basic principles of biomechanics with repetitive exercises in class and homework assignments given throughout the textbook Includes over 100 new problem sets with solutions and illustrations

Basic Orthopaedic Biomechanics

Author: Van C. Mow
Publisher: Raven Pr
ISBN: UOM:39015034838188
Release Date: 1991
Genre: Medical

Reviews biomechanical laws governing natural human locomotion and the movement of prosthetic joints. Provides a synthesis of clinical and research data on muscle and joint loads; biomechanical forces; stress-strain behaviours; biomechanics of the spine and of artificial joint fixation and more.

Design of Artificial Human Joints Organs

Author: Subrata Pal
Publisher: Springer Science & Business Media
ISBN: 9781461462552
Release Date: 2013-08-31
Genre: Technology & Engineering

​Design of Artificial Human Joints & Organs is intended to present the basics of the normal systems and how, due to aging, diseases or trauma, body parts may need to be replaced with manmade materials. The movement of the body generates forces in various work situations and also internally at various joints, muscles and ligaments. It is essential to figure out the forces, moments, pressure etc to design replacements that manage these stresses without breaking down. The mechanical characterization of the hard and the soft tissues are presented systematically using the principles of solid mechanics. The viscoelastic properties of the tissue will also discussed. This text covers the design science and methodology from concept to blueprint to the final component being replaced. Each chapter will be a brief overview of various joint/organ replacement systems. Engineers working on artificial joints and organs, as well as students of Mechanical Engineering and Biomedical Engineering are the main intended audience, however, the pedagogy is simple enough for those who are learning the subject for the first time.

Physical Properties of Polymers

Author: James Mark
Publisher: Cambridge University Press
ISBN: 0521530180
Release Date: 2004-03-25
Genre: Science

Polymer science is a large and rapidly developing branch of modern materials chemistry. This book is a thoroughly revised and up-dated third edition of a well established textbook. Written by seven of the leading figures in the polymer science community it discusses the diverse physical states and associated properties of polymers. Each author contributes a chapter which reflects his own interests and expertise. Containing numerous problem sets and worked examples this third edition will be of primary interest to graduate students and researchers studying all aspects of polymeric materials.

Introductory Biomechanics

Author: C. Ross Ethier
Publisher: Cambridge University Press
ISBN: 9781139461825
Release Date: 2007-03-12
Genre: Technology & Engineering

Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.

Life s Devices

Author: Steven Vogel
Publisher: Princeton University Press
ISBN: 0691024189
Release Date: 1988
Genre: Science

Looks at how the structure of plants and animals help them cope with their surroundings and discusses materials, shapes, movements, and energy