Biomedical Imaging

Author: Karen M. Mudry
Publisher: CRC Press
ISBN: 9780203491409
Release Date: 2003-03-26
Genre: Medical

Comprised of chapters carefully selected from CRC’s best-selling engineering handbooks, volumes in the Principles and Applications in Engineering series provide convenient, economical references sharply focused on particular engineering topics and subspecialties. Culled from the Biomedical Engineering Handbook, Biomedical Imaging provides an overview of the main medical imaging devices and highlights emerging systems. With applications ranging from imaging the whole body to replicating cellular components, the imaging modalities discussed include x-ray systems, computed tomographic systems, magnetic resonance imaging, nuclear medicine, ultrasound, MR microscopy, virtual reality, and more.

Biomedical Imaging

Author: Reiner Salzer
Publisher: John Wiley & Sons
ISBN: 9781118271926
Release Date: 2012-04-11
Genre: Technology & Engineering

This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may mean fewer animal lab tests and clinical trials.

Fluorescence Lifetime Spectroscopy and Imaging

Author: Laura Marcu
Publisher: CRC Press
ISBN: 9781439861677
Release Date: 2014-07-17
Genre: Technology & Engineering

During the past two decades, there has been an increasing appreciation of the significant value that lifetime-based techniques can add to biomedical studies and applications of fluorescence. Bringing together perspectives of different research communities, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics explores the remarkable advances in time-resolved fluorescence techniques and their role in a wide range of biological and clinical applications. Broadly accessible, the book captures the state-of-the-art of fluorescence lifetime metrology and imaging and provides current perspectives on their applications to biomedical studies of intact tissues and medical diagnosis. The text introduces these techniques within the wider context of fluorescence spectroscopy and describes basic principles underlying current instrumentation for fluorescence lifetime imaging and metrology (FLIM). It also covers the wide range of methods, including single channel (point) spectroscopy, fluorescence lifetime imaging microscopy, and single- and multi-photon excitation. Edited by pioneers in this field, with contributions from leading experts, the book includes an overview of complementary techniques that help researchers beginning FLIM research. It offers a comprehensive treatment of fundamental principles, instrumentation, analytical methods, and applications. It also provides an overview of the label-free contrast available from lifetime measurements of tissue autofluorescence and the prospects for exploiting this for clinical applications and biomedical research including drug discovery.

Introduction to Medical Imaging

Author: Nadine Barrie Smith
Publisher: Cambridge University Press
ISBN: 9781139492041
Release Date: 2010-11-18
Genre: Technology & Engineering

Covering the basics of X-rays, CT, PET, nuclear medicine, ultrasound, and MRI, this textbook provides senior undergraduate and beginning graduate students with a broad introduction to medical imaging. Over 130 end-of-chapter exercises are included, in addition to solved example problems, which enable students to master the theory as well as providing them with the tools needed to solve more difficult problems. The basic theory, instrumentation and state-of-the-art techniques and applications are covered, bringing students immediately up-to-date with recent developments, such as combined computed tomography/positron emission tomography, multi-slice CT, four-dimensional ultrasound, and parallel imaging MR technology. Clinical examples provide practical applications of physics and engineering knowledge to medicine. Finally, helpful references to specialised texts, recent review articles, and relevant scientific journals are provided at the end of each chapter, making this an ideal textbook for a one-semester course in medical imaging.

Medical Imaging

Author: Mostafa Analoui
Publisher: CRC Press
ISBN: 9781439871027
Release Date: 2012-11-08
Genre: Medical

The discovery of x-ray, as a landmark event, enabled us to see the "invisible," opening a new era in medical diagnostics. More importantly, it offered a unique undestanding around the interaction of electromagnetic signal with human tissue and the utility of its selective absorption, scattering, diffusion, and reflection as a tool for understanding the physiology, evolution of disease, and therapy. With contributions from world-class experts, Medical Imaging: Principles and Practices offers a review of key imaging modalities with established clinical utilization and examples of quantitative tools for image analysis, modeling, and interpretation. The book provides a detailed overview of x-ray imaging and computed tomography, fundamental concepts in signal acquisition and processes, followed by an overview of functional MRI (fMRI) and chemical shift imaging. It also covers topics in Magnetic Resonance Microcopy, the physics of instrumentation and signal collection, and their application in clinical practice. Highlights include a chapter offering a unique perspective on the use of quantitative PET for its applications in drug discovery and development, which is rapidly becoming an indispensible tool for clinical and research applications, and a chapter addressing the key issues around organizing and searching multimodality data sets, an increasingly important yet challenging issue in clinical imaging. Topics include: X-ray imaging and computed tomography MRI and magnetic resonance microscopy Nuclear imaging Ultrasound imaging Electrical Impedance Tomography (EIT) Emerging technologies for in vivo imaging Contrast-enhanced MRI MR approaches for osteoarthritis and cardiovascular imaging PET quantitative imaging for drug development Medical imaging data mining and search The selection of topics provides readers with an appreciation of the depth and breadth of the field and the challenges ahead of the technical and clinical community ofresearchers and practitioners.

Medical Imaging

Author: Krzysztof Iniewski
Publisher: John Wiley & Sons
ISBN: 0470451807
Release Date: 2009-02-18
Genre: Science

A must-read for anyone working in electronics in the healthcare sector This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers: X-ray imaging and computed tomography–X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging Nuclear medicine–SPECT and PET imaging principles; low-noise electronics for radiation sensors Ultrasound imaging–Electronics for diagnostic ultrasonic imaging Magnetic resonance imaging–Magnetic resonance imaging principles; MRI technology

Basics of Biomedical Ultrasound for Engineers

Author: Haim Azhari
Publisher: John Wiley & Sons
ISBN: 0470561467
Release Date: 2010-03-25
Genre: Science

A practical learning tool for building a solid understanding of biomedical ultrasound Basics of Biomedical Ultrasound for Engineers is a structured textbook that leads the novice through the field in a clear, step-by-step manner. Based on twenty years of teaching experience, it begins with the most basic definitions of waves, proceeds to ultrasound in fluids and solids, explains the principles of wave attenuation and reflection, then introduces to the reader the principles of focusing devices, ultrasonic transducers, and acoustic fields, and then delves into integrative applications of ultrasound in conventional and advanced medical imaging techniques (including Doppler imaging) and therapeutic ultrasound. Demonstrative medical applications are interleaved within the text and exemplary questions with solutions are provided on every chapter. Readers will come away with the basic toolkit of knowledge they need to successfully use ultrasound in biomedicine and conduct research. Encompasses a wide range of topics within biomedical ultrasound, from attenuation and eflection of waves to the intricacies of focusing devices, transducers, acoustic fields, modern medical imaging techniques, and therapeutics Explains the most common applications of biomedical ultrasound from an engineering point of view Provides need-to-know information in the form of physical and mathematical principles directed at concrete applications Fills in holes in knowledge caused by ever-increasing new applications of ultrasonic imaging and therapy Basics of Biomedical Ultrasound for Engineers is designed for undergraduate and graduate engineering students; academic/research engineers unfamiliar with ultrasound; and physicians and researchers in biomedical disciplines who need an introduction to the field. This book is meant to be “my first book on biomedical ultrasound” for anyone who is interested in the field.

Biomedical Imaging

Author: Peter Morris
Publisher: Elsevier
ISBN: 9780857097477
Release Date: 2014-02-19
Genre: Technology & Engineering

Biomedical Imaging: Applications and Advances discusses the technologies and latest developments in the increasingly important field of imaging techniques for the diagnosis of disease, monitoring of medical implants, and strategies for personalized medicine. Chapters in part one explore the full range of imaging technologies from atomic force microscopy (AFM) to positron emission tomography (PET), as well as the next-generation techniques that could provide the basis for personalized medicine. Part two highlights application-specific biomedical imaging methods, including ophthalmic imaging of ocular circulation, imaging methods for detection of joint degeneration, neural brain activation imaging, and the use of brain imaging to assess post-therapy responses. Further chapters review intravascular, cardiovascular, and whole-body magnetic resonance imaging (MRI). Biomedical Imaging is a technical resource for those concerned with imaging and diagnosis, including materials scientists and engineers as well as clinicians and academics. Explores the full range of imaging technologies from atomic force microscopy (AFM) to positron emission tomography (PET), as well as next-eneration techniques for personalized medicine Highlights application-specific biomedical imaging methods, including ophthalmic imaging of ocular circulation, imaging methods for detection of joint degeneration, neural brain activation imaging, and the use of brain imaging to assess post therapy responses Reviews intravascular, cardiovascular, and whole-body magnetic resonance imaging (MRI)

Molecular Imaging

Author: Ralph Weissleder
Publisher: PMPH-USA
ISBN: 1607950057
Release Date: 2010
Genre: Medical

The field of molecular imaging of living subjects have evolved considerably and have seen spectacular advances in chemistry, engineering and biomedical applications. This textbook was designed to fill the need for an authoritative source for this multi-disciplinary field. We have been fortunate to recruit over 80 leading authors contributing 75 individual chapters. Given the multidisciplinary nature of the field, the book is broken into six different sections: "Molecular Imaging technologies", "Chemistry", "Molecular Imaging in Cell and Molecular Biology", "Applications of Molecular Imaging", "Molecular Imaging in Drug Evaluation" with the final section comprised of chapters on computation, bioinformatics and modeling. The organization of this large amount of information is logical and strives to avoid redundancies among chapters. It encourages the use of figures to illustrate concepts and to provide numerous molecular imaging examples.

Biomagnetics

Author: Shoogo Ueno
Publisher: CRC Press
ISBN: 9781482239218
Release Date: 2015-08-18
Genre: Medical

Discover the Most Advanced Technologies in Biomagnetics Co-edited by Professor Ueno, a leader in the biomagnetics field for over 40 years, Biomagnetics: Principles and Applications of Biomagnetic Stimulation and Imaging explains the physical principles of biomagnetic stimulation and imaging and explores applications of the latest techniques in neuroscience, clinical medicine, and healthcare. The book shows you how the techniques are used in hospitals and why they are so promising. A brief overview of recent research trends in biomagnetics provides you with an up-to-date, informative guide to explore further in this field. The book focuses on three important areas: Magnetic nerve stimulation and transcranial magnetic stimulation Biomagnetic measurements and imaging of the human brain by advanced technologies of magnetoencephalography and MRI Biomagnetic approaches to potential treatments of cancers, pains, and other neurological and psychiatric diseases, such as Alzheimer’s disease and depression These core areas of the book were developed from the editors’ prestigious graduate-level courses in biomedical engineering. The text also discusses biomagnetic approaches to advanced medicine, including regenerative and rehabilitation medicine.

Medical Imaging

Author: Troy Farncombe
Publisher: CRC Press
ISBN: 9781351831758
Release Date: 2017-12-21
Genre: Science

The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.

Modeling Imaging of Bioelectrical Activity

Author: Bin He
Publisher: Springer Science & Business Media
ISBN: 0387499636
Release Date: 2010-07-03
Genre: Technology & Engineering

Over the past several decades, much progress has been made in understanding the mechanisms of electrical activity in biological tissues and systems, and for developing non-invasive functional imaging technologies to aid clinical diagnosis of dysfunction in the human body. The book will provide full basic coverage of the fundamentals of modeling of electrical activity in various human organs, such as heart and brain. It will include details of bioelectromagnetic measurements and source imaging technologies, as well as biomedical applications. The book will review the latest trends in the field and comment on the future direction in this fast developing line of research.

Fundamentals of Medical Imaging

Author: Paul Suetens
Publisher: Cambridge University Press
ISBN: 9781108211208
Release Date: 2017-05-11
Genre: Medical

This third edition provides a concise and generously illustrated survey of the complete field of medical imaging and image computing, explaining the mathematical and physical principles and giving the reader a clear understanding of how images are obtained and interpreted. Medical imaging and image computing are rapidly evolving fields, and this edition has been updated with the latest developments in the field, as well as new images and animations. An introductory chapter on digital image processing is followed by chapters on the imaging modalities: radiography, CT, MRI, nuclear medicine and ultrasound. Each chapter covers the basic physics and interaction with tissue, the image reconstruction process, image quality aspects, modern equipment, clinical applications, and biological effects and safety issues. Subsequent chapters review image computing and visualization for diagnosis and treatment. Engineers, physicists and clinicians at all levels will find this new edition an invaluable aid in understanding the principles of imaging and their clinical applications.

Medical Infrared Imaging

Author: Mary Diakides
Publisher: CRC Press
ISBN: 9781439872499
Release Date: 2012-12-12
Genre: Medical

The evolution of technological advances in infrared sensor technology, image processing, "smart" algorithms, knowledge-based databases, and their overall system integration has resulted in new methods of research and use in medical infrared imaging. The development of infrared cameras with focal plane arrays no longer requiring cooling, added a new dimension to this modality. Medical Infrared Imaging: Principles and Practices covers new ideas, concepts, and technologies along with historical background and clinical applications. The book begins by exploring worldwide advances in the medical applications of thermal imaging systems. It covers technology and hardware including detectors, detector materials, un-cooled focal plane arrays, high performance systems, camera characterization, electronics for on-chip image processing, optics, and cost-reduction designs. It then discusses the physiological basis of the thermal signature and its interpretation in a medical setting. The book also covers novel and emerging techniques, the complexities and importance of protocols for effective and reproducible results, storage and retrieval of thermal images, and ethical obligations. Of interest to both the medical and biomedical engineering communities, the book explores many opportunities for developing and conducting multidisciplinary research in many areas of medical infrared imaging. These range from clinical quantification to intelligent image processing for enhancement of the interpretation of images, and for further development of user-friendly high-resolution thermal cameras. These would enable the wide use of infrared imaging as a viable, noninvasive, low-cost, first-line detection modality.

Medical Image Processing

Author: Geoff Dougherty
Publisher: Springer Science & Business Media
ISBN: 1441997792
Release Date: 2011-07-25
Genre: Technology & Engineering

The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.