Categorical Logic and Type Theory

Author: Bart Jacobs
Publisher: Gulf Professional Publishing
ISBN: 0444508538
Release Date: 2001
Genre: Mathematics

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Introduction to Higher Order Categorical Logic

Author: J. Lambek
Publisher: Cambridge University Press
ISBN: 0521356539
Release Date: 1988-03-25
Genre: Mathematics

Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.

Practical Foundations of Mathematics

Author: Paul Taylor
Publisher: Cambridge University Press
ISBN: 0521631076
Release Date: 1999-05-13
Genre: Mathematics

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

Computation and Logic in the Real World

Author: Barry S. Cooper
Publisher: Springer
ISBN: 9783540730019
Release Date: 2007-07-25
Genre: Computers

This book constitutes the refereed proceedings of the Third International Conference on Computability in Europe, CiE 2007, held in Sienna, Italy, in June 2007. The 50 revised full papers presented together with 36 invited papers were carefully reviewed and selected from 167 submissions.

From Sets and Types to Topology and Analysis

Author: Laura Crosilla
Publisher: Oxford University Press on Demand
ISBN: 9780198566519
Release Date: 2005-10-06
Genre: Mathematics

Bridging the foundations and practice of constructive mathematics, this text focusses on the contrast between the theoretical developments - which have been most useful for computer science - and more specific efforts on constructive analysis, algebra and topology.

Logic Mathematics Philosophy Vintage Enthusiasms

Author: David DeVidi
Publisher: Springer Science & Business Media
ISBN: 9400702140
Release Date: 2011-03-23
Genre: Philosophy

The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic (William Lawvere, Peter Aczel, Graham Priest, Giovanni Sambin); analytical philosophy (Michael Dummett, William Demopoulos), philosophy of science (Michael Redhead, Frank Arntzenius), philosophy of mathematics (Michael Hallett, John Mayberry, Daniel Isaacson) and decision theory and foundations of economics (Ken Bimore). Most articles are contributions to current philosophical debates, but contributions also include some new mathematical results, important historical surveys, and a translation by Wilfrid Hodges of a key work of arabic logic.

Categories for the Working Philosopher

Author: Elaine Landry
Publisher: Oxford University Press
ISBN: 9780198748991
Release Date: 2017-10-19
Genre: Mathematics

This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.

Logic Foundations of Mathematics and Computability Theory

Author: Robert E. Butts
Publisher: Springer Science & Business Media
ISBN: 9789401011389
Release Date: 2012-12-06
Genre: Science

The Fifth International Congress of Logic, Methodology and Philosophy of Science was held at the University of Western Ontario, London, Canada, 27 August to 2 September 1975. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science, and was sponsored by the National Research Council of Canada and the University of Western Ontario. As those associated closely with the work of the Division over the years know well, the work undertaken by its members varies greatly and spans a number of fields not always obviously related. In addition, the volume of work done by first rate scholars and scientists in the various fields of the Division has risen enormously. For these and related reasons it seemed to the editors chosen by the Divisional officers that the usual format of publishing the proceedings of the Congress be abandoned in favour of a somewhat more flexible, and hopefully acceptable, method of pre sentation. Accordingly, the work of the invited participants to the Congress has been divided into four volumes appearing in the University of Western Ontario Series in Philosophy of Science. The volumes are entitled, Logic, Foundations of Mathematics and Computability Theory, Foun dational Problems in the Special Sciences, Basic Problems in Methodol ogy and Linguistics, and Historical and Philosophical Dimensions of Logic, Methodology and Philosophy of Science.

Logic for Applications

Author: Anil Nerode
Publisher: Springer Science & Business Media
ISBN: 0387948937
Release Date: 1997-01-17
Genre: Computers

In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the re cent dramatic growth in the applications oflogic to computer science. Thus, our choice oftopics has been heavily influenced by such applications. Of course, we cover the basic traditional topics: syntax, semantics, soundnes5, completeness and compactness as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much ofour book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic especially in its application to Logic Programming and PRO LOG. We deal extensively with the mathematical foundations ofall three ofthese subjects. In addition, we include two chapters on nonclassical logics - modal and intuitionistic - that are becoming increasingly important in computer sci ence. We develop the basic material on the syntax and semantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method in troduced for classical logic. We indicate how it can easily be adapted to various other special types of modal logics. A number of more advanced topics (includ ing nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.

Principia Mathematica

Author: Alfred North Whitehead
Publisher:
ISBN: STANFORD:36105039675058
Release Date: 1984-01
Genre: Logic, Symbolic and mathematical


The Logical Foundations of Mathematics

Author: William S. Hatcher
Publisher: Elsevier
ISBN: 9781483189635
Release Date: 2014-05-09
Genre: Mathematics

The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory. Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and the other, in a "natural deduction" style, for presenting detailed formal proofs. A somewhat novel feature of this framework is a full semantic and syntactic treatment of variable-binding term operators as primitive symbols of logic. Subsequent chapters focus on the origin of modern foundational studies; Gottlob Frege's formal system intended to serve as a foundation for mathematics and its paradoxes; the theory of types; and the Zermelo-Fraenkel set theory. David Hilbert's program and Kurt Gödel's incompleteness theorems are also examined, along with the foundational systems of W. V. Quine and the relevance of categorical algebra for foundations. This monograph will be of interest to students, teachers, practitioners, and researchers in mathematics.

Language in Action

Author: J. van Benthem
Publisher: Elsevier
ISBN: 9780080934228
Release Date: 1991-02-12
Genre: Computers

This monograph began life as a series of papers documenting five years of research into the logical foundations of Categorial Grammar, a grammatical paradigm which has close analogies with Lambda Calculus and Type Theory. The technical theory presented here stems from the interface between Logic and Linguistics and, in particular, the theory of generalized quantification. A categorical framework with lambda calculus-oriented semantics is a convenient vehicle for generalizing semantic insights (obtained in various corners of natural language) into one coherent theory. The book aims to demonstrate to fellow logicians that the resulting applied lambda calculus has intrinsic logical interest. In the final analysis, the idea is not just to `break the syntactic code' of natural languages but to understand the cognitive functioning of the human mind.

Logic Colloquium 03

Author: Viggo Stoltenberg-Hansen
Publisher: Cambridge University Press
ISBN: 9781108587143
Release Date: 2017-03-30
Genre: Mathematics

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twenty-fourth publication in the Lecture Notes in Logic series, contains the proceedings of the European Summer Meeting of the Association for Symbolic Logic, held in Helsinki, Finland, in August 2003. These articles include an extended tutorial on generalizing finite model theory, as well as seventeen original research articles spanning all areas of mathematical logic, including proof theory, set theory, model theory, computability theory and philosophy.