Categorical Logic and Type Theory

Author: Bart Jacobs
Publisher: Gulf Professional Publishing
ISBN: 0444508538
Release Date: 2001
Genre: Mathematics

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Categorical Logic and Type Theory

Author: B. Jacobs
Publisher: Elsevier
ISBN: 0080528708
Release Date: 1999-01-14
Genre: Mathematics

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Categorical Logic and Type Theory

Author: Bart Jacobs
Publisher: Elsevier Science Limited
ISBN: UOM:39015053151935
Release Date: 1999
Genre: Mathematics

This text attempts to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category.

Introduction to Higher Order Categorical Logic

Author: J. Lambek
Publisher: Cambridge University Press
ISBN: 0521356539
Release Date: 1988-03-25
Genre: Mathematics

Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.

Handbook of Mathematical Logic

Author: J. Barwise
Publisher: Elsevier
ISBN: 0080933645
Release Date: 1982-03-01
Genre: Mathematics

The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

Practical Foundations of Mathematics

Author: Paul Taylor
Publisher: Cambridge University Press
ISBN: 0521631076
Release Date: 1999-05-13
Genre: Mathematics

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

Language in Action

Author: J. van Benthem
Publisher: Elsevier
ISBN: 9780080934228
Release Date: 1991-02-12
Genre: Computers

This monograph began life as a series of papers documenting five years of research into the logical foundations of Categorial Grammar, a grammatical paradigm which has close analogies with Lambda Calculus and Type Theory. The technical theory presented here stems from the interface between Logic and Linguistics and, in particular, the theory of generalized quantification. A categorical framework with lambda calculus-oriented semantics is a convenient vehicle for generalizing semantic insights (obtained in various corners of natural language) into one coherent theory. The book aims to demonstrate to fellow logicians that the resulting applied lambda calculus has intrinsic logical interest. In the final analysis, the idea is not just to `break the syntactic code' of natural languages but to understand the cognitive functioning of the human mind.

Realizability

Author: Jaap van Oosten
Publisher: Elsevier
ISBN: 0080560067
Release Date: 2008-04-10
Genre: Mathematics

Aimed at starting researchers in the field, Realizability gives a rigorous, yet reasonable introduction to the basic concepts of a field which has passed several successive phases of abstraction. Material from previously unpublished sources such as Ph.D. theses, unpublished papers, etc. has been molded into one comprehensive presentation of the subject area. - The first book to date on this subject area - Provides an clear introduction to Realizability with a comprehensive bibliography - Easy to read and mathematically rigorous - Written by an expert in the field

The Logical Foundations of Mathematics

Author: William S. Hatcher
Publisher: Elsevier
ISBN: 9781483189635
Release Date: 2014-05-09
Genre: Mathematics

The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory. Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and the other, in a "natural deduction" style, for presenting detailed formal proofs. A somewhat novel feature of this framework is a full semantic and syntactic treatment of variable-binding term operators as primitive symbols of logic. Subsequent chapters focus on the origin of modern foundational studies; Gottlob Frege's formal system intended to serve as a foundation for mathematics and its paradoxes; the theory of types; and the Zermelo-Fraenkel set theory. David Hilbert's program and Kurt Gödel's incompleteness theorems are also examined, along with the foundational systems of W. V. Quine and the relevance of categorical algebra for foundations. This monograph will be of interest to students, teachers, practitioners, and researchers in mathematics.

Principia Mathematica to 56

Author: Alfred North Whitehead
Publisher: Cambridge University Press
ISBN: 0521626064
Release Date: 1997-09-11
Genre: Mathematics

The great three-volume Principia Mathematica (CUP 1927) is deservedly the most famous work ever written on the foundations of mathematics. Its aim is to deduce all the fundamental propositions of logic and mathematics from a small number of logical premises and primitive ideas, establishing that mathematics is a development of logic. This abridged text of Volume I contains the material that is most relevant to an introductory study of logic and the philosophy of mathematics (more advanced students will of course wish to refer to the complete edition). It contains the whole of the preliminary sections (which present the authors' justification of the philosophical standpoint adopted at the outset of their work); the whole of Part I (in which the logical properties of propositions, propositional functions, classes and relations are established); section A of Part II (dealing with unit classes and couples); and Appendices A and C (which give further developments of the argument on the theory of deduction and truth functions).

From a Geometrical Point of View

Author: Jean-Pierre Marquis
Publisher: Springer Science & Business Media
ISBN: 9781402093845
Release Date: 2008-11-20
Genre: Science

From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein’s Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane’s work in the early 1940’s and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics. From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.

The Lambda Calculus

Author: H.P. Barendregt
Publisher: Elsevier
ISBN: 0080933750
Release Date: 2013-07-10
Genre: Mathematics

The revised edition contains a new chapter which provides an elegant description of the semantics. The various classes of lambda calculus models are described in a uniform manner. Some didactical improvements have been made to this edition. An example of a simple model is given and then the general theory (of categorical models) is developed. Indications are given of those parts of the book which can be used to form a coherent course.

Categories for the Working Philosopher

Author: Elaine Landry
Publisher: Oxford University Press
ISBN: 9780198748991
Release Date: 2017-10-19
Genre: Mathematics

This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.

Constructibility

Author: Keith J. Devlin
Publisher: Cambridge University Press
ISBN: 9781107168350
Release Date: 2017-03-16
Genre: Computers

A comprehensive account of the theory of constructible sets at an advanced level, aimed at graduate mathematicians.

Topoi

Author: R. Goldblatt
Publisher: Elsevier
ISBN: 9781483299211
Release Date: 2014-06-28
Genre: Mathematics

The first of its kind, this book presents a widely accessible exposition of topos theory, aimed at the philosopher-logician as well as the mathematician. It is suitable for individual study or use in class at the graduate level (it includes 500 exercises). It begins with a fully motivated introduction to category theory itself, moving always from the particular example to the abstract concept. It then introduces the notion of elementary topos, with a wide range of examples and goes on to develop its theory in depth, and to elicit in detail its relationship to Kripke's intuitionistic semantics, models of classical set theory and the conceptual framework of sheaf theory (``localization'' of truth). Of particular interest is a Dedekind-cuts style construction of number systems in topoi, leading to a model of the intuitionistic continuum in which a ``Dedekind-real'' becomes represented as a ``continuously-variable classical real number''. The second edition contains a new chapter, entitled Logical Geometry, which introduces the reader to the theory of geometric morphisms of Grothendieck topoi, and its model-theoretic rendering by Makkai and Reyes. The aim of this chapter is to explain why Deligne's theorem about the existence of points of coherent topoi is equivalent to the classical Completeness theorem for ``geometric'' first-order formulae.