Clifford Algebra to Geometric Calculus

Author: D. Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789400962927
Release Date: 2012-12-06
Genre: Science

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebm' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Clifford Algebras and their Applications in Mathematical Physics

Author: A. Micali
Publisher: Springer Science & Business Media
ISBN: 9789401580908
Release Date: 2013-03-09
Genre: Mathematics

This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.

Clifford Algebras and Their Application in Mathematical Physics

Author: Volker Dietrich
Publisher: Springer Science & Business Media
ISBN: 9789401150361
Release Date: 2012-12-06
Genre: Mathematics

Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.

Symmetries in Graphs Maps and Polytopes

Author: Jozef Širáň
Publisher: Springer
ISBN: 9783319304519
Release Date: 2016-03-26
Genre: Mathematics

This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d’enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d’Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>

Introduction to Soliton Theory Applications to Mechanics

Author: Ligia Munteanu
Publisher: Springer Science & Business Media
ISBN: 9781402025778
Release Date: 2006-07-06
Genre: Mathematics

This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.

New Foundations in Mathematics

Author: Garret Sobczyk
Publisher: Springer Science & Business Media
ISBN: 9780817683856
Release Date: 2012-10-26
Genre: Mathematics

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.

The Landscape of Theoretical Physics A Global View

Author: M. Pavsic
Publisher: Springer Science & Business Media
ISBN: 140200351X
Release Date: 2001-11-30
Genre: Science

Today many important directions of research are being pursued more or less independently of each other. These are, for instance, strings and mem branes, induced gravity, embedding of spacetime into a higher dimensional space, the brane world scenario, the quantum theory in curved spaces, Fock Schwinger proper time formalism, parametrized relativistic quantum the ory, quantum gravity, wormholes and the problem of “time machines”, spin and supersymmetry, geometric calculus based on Clifford algebra, various interpretations of quantum mechanics including the Everett interpretation, and the recent important approach known as “decoherence”. A big problem, as I see it, is that various people thoroughly investigate their narrow field without being aware of certain very close relations to other fields of research. What we need now is not only to see the trees but also the forest. In the present book I intend to do just that: to carry out a first approximation to a synthesis of the related fundamental theories of physics. I sincerely hope that such a book will be useful to physicists. From a certain viewpoint the book could be considered as a course in the oretical physics in which the foundations of all those relevant fundamental theories and concepts are attempted to be thoroughly reviewed. Unsolved problems and paradoxes are pointed out. I show that most of those ap proaches have a common basis in the theory of unconstrained membranes. The very interesting and important concept of membrane space, the tensor calculus in and functional transformations in are discussed.

Geometric Algebra with Applications in Science and Engineering

Author: Eduardo Bayro Corrochano
Publisher: Springer Science & Business Media
ISBN: 0817641998
Release Date: 2001-04-20
Genre: Computers

This book is addressed to a broad audience of cyberneticists, computer scientists, engineers, applied physicists and applied mathematicians. The book offers several examples to clarify the importance of geometric algebra in signal and image processing, filtering and neural computing, computer vision, robotics and geometric physics. The contributions of this book will help the reader to greater understand the potential of geometric algebra for the design and implementation of real time artifical systems.

Classical Mechanics

Author: J. Michael Finn
Publisher: Infinity Science PressLlc
ISBN: 1934015326
Release Date: 2008
Genre: Science

Classical Mechanics presents an updated treatment of the dynamics of particles and particle systems suitable for students preparing for advanced study of physics and closely related fields, such as astronomy and the applied engineering sciences. Compared to older books on this subject, the mathematical treatment has been updated for the study of more advanced topics in quantum mechanics, statistical mechanics, and nonlinear and orbital mechanics. The text begins with a review of the principles of classical Newtonian dynamics of particles and particle systems and proceeds to show how these principles are modified and extended by developments in the field. The text ends with the unification of space and time given by the Special Theory of Relativity. In addition, Hamiltonian dynamics and the concept of phase space are introduced early on. This allows integration of the concepts of chaos and other nonlinear effects into the main flow of the text. The role of symmetries and the underlying geometric structure of space-time is a key theme. In the latter chapters, the connection between classical and quantum mechanics is examined in some detail.

Geometry fields and cosmology

Author: B. R. Iyer
Publisher: Kluwer Academic Pub
ISBN: 0792347250
Release Date: 1997-10-31
Genre: Mathematics

This volume is based on the lectures given at the First Inter-University Graduate School on Gravitation and Cosmology organized by IUCAA, Pune, India. The material offers a firm mathematical foundation for a number of subjects including geometrical methods for physics, quantum field theory methods and relativistic cosmology. It brings together the most basic and widely used techniques of theoretical physics today. A number of specially selected problems with hints and solutions have been added to assist the reader in achieving mastery of the topics. Audience: The style of the book is pedagogical and should appeal to graduate students and research workers who are beginners in the study of gravitation and cosmology or related subjects such as differential geometry, quantum field theory and the mathematics of physics. This volume is also recommended as a textbook for courses or for self-study.

The Enigmatic Photon

Author: Myron Evans
Publisher: Kluwer Academic Pub
ISBN: UOM:39015026930050
Release Date: 1995-01
Genre: Science

This book is a sequel to The Enigmatic Photon. Volume 1: The Field B(superscript (3)) (Kluwer Academic Publishers, 1994), which presented the first systematic development of the fundamental magnetizing field of electromagnetic radiation: the field B(superscript (3)). Its 12 chapters collectively describe the properties of B(superscript (3)) in a vacuum and in the interaction of light with matter. The present volume deals with the development of the theory of the Evans-Vigier field B(superscript (3)). It opens with the derivation of the novel field B(superscript (3)) from the Diract equation of relativistic quantum field theory. The existence of B(superscript (3)) in the vacuum means that the gauge group of electromagnetism becomes O(3), the group of rotations. This is non-Abelian, and so requires a self-consistent development of the vacuum Maxwell equations themselves. The role of B(superscript (3)) is discussed in unified field theory and quantum electrodynamics. The classical vacuum field B(superscript (3)) is a novel, fundamentally important feature of electrodynamics which indicates that the particulate photon carries mass, thus settling a longstanding debate in favour of protagonists of photon mass. Audience: Researchers and graduate students interested in the theory of electromagnetic radiation.