Clifford Algebras

Author: Daniel Klawitter
Publisher: Springer
ISBN: 9783658076184
Release Date: 2014-10-29
Genre: Mathematics

After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.

Geometric Computing with Clifford Algebras

Author: Gerald Sommer
Publisher: Springer Science & Business Media
ISBN: 9783662046210
Release Date: 2013-06-29
Genre: Computers

This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.

Applications of Geometric Algebra in Computer Science and Engineering

Author: Leo Dorst
Publisher: Springer Science & Business Media
ISBN: 9781461200895
Release Date: 2012-12-06
Genre: Mathematics

Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.

Geometric Design of Linkages

Author: J. Michael McCarthy
Publisher: Springer Science & Business Media
ISBN: 1441978925
Release Date: 2010-11-11
Genre: Science

This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.

Clifford Algebras

Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 9781461220442
Release Date: 2012-12-06
Genre: Mathematics

The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

21st Century Kinematics

Author: J. Michael McCarthy
Publisher: Springer Science & Business Media
ISBN: 9781447145103
Release Date: 2012-08-04
Genre: Technology & Engineering

21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications.

Combinatorial Image Analysis

Author: Reinhard Klette
Publisher: Springer Science & Business Media
ISBN: 9783540239420
Release Date: 2004-11-22
Genre: Computers

This volume presents the proceedings of the 10th International Workshop on Combinatorial Image Analysis, held December 1–3, 2004, in Auckland, New Zealand. Prior meetings took place in Paris (France, 1991), Ube (Japan, 1992), Washington DC (USA, 1994), Lyon (France, 1995), Hiroshima (Japan, 1997), Madras (India, 1999), Caen (France, 2000), Philadelphia (USA, 2001), and - lermo (Italy, 2003). For this workshop we received 86 submitted papers from 23 countries. Each paper was evaluated by at least two independent referees. We selected 55 papers for the conference. Three invited lectures by Vladimir Kovalevsky (Berlin), Akira Nakamura (Hiroshima), and Maurice Nivat (Paris) completed the program. Conference papers are presented in this volume under the following topical part titles: discrete tomography (3 papers), combinatorics and computational models (6), combinatorial algorithms (6), combinatorial mathematics (4), d- ital topology (7), digital geometry (7), approximation of digital sets by curves and surfaces (5), algebraic approaches (5), fuzzy image analysis (2), image s- mentation (6), and matching and recognition (7). These subjects are dealt with in the context of digital image analysis or computer vision.

Mathematics Mechanization and Applications

Author: Xiao-Shan Gao
Publisher:
ISBN: 0127347607
Release Date: 2000
Genre: Computers

Mathematics Mechanization and Applications provides a uniform presentation of major developments, carried out mostly in Wu's extended Chinese group, on algorithms and software tools for mechanizing algebraic equations solving and geometric theorem proving together with their applications to problems in science and engineering. It is distinguished by its uniform presentation with all-Chinese contributors and a 40-page list of references. There are 20 chapters written by experienced researchers. The book is divided into four parts: polynomial system solving, automated geometric reasoning, algebraic computation, and implementations and applications. Each chapter is devoted to surveying and expounding the main results achieved from one selected subject. The book contains surveys for diverse applications of the theories and methods to real world problems, ranging from the analysis of robotics and mechanisms to nonlinear programming and chemical equilibrium computation. Part of the theoretical and practical work reviewed in the book has been either unpublished or published only in Chinese journals or even only in the Chinese language. This book therefore provides Western readers working in symbolic and algebraic computation, geometric reasoning and modeling, algorithmic mathematics, robotics, CAGD, and other relevant areas with an easily accessible source of references for what the Chinese researchers have been doing under the banner of mathematics mechanization. * Addresses the frontiers of research with original ideas and results * Includes sophisticated, successful applications to scientific and engineering problems * Covers polynomial system solving, geometric reasoning, computer algebra, and mathematical software * Is comprehensive and focused * Contains an extensive bibliography--of high reference value--particularly for western readers

Lectures on Clifford Geometric Algebras and Applications

Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 9780817681906
Release Date: 2011-06-28
Genre: Mathematics

The subject of Clifford (geometric) algebras offers a unified algebraic framework for the direct expression of the geometric concepts in algebra, geometry, and physics. This bird's-eye view of the discipline is presented by six of the world's leading experts in the field; it features an introductory chapter on Clifford algebras, followed by extensive explorations of their applications to physics, computer science, and differential geometry. The book is ideal for graduate students in mathematics, physics, and computer science; it is appropriate both for newcomers who have little prior knowledge of the field and professionals who wish to keep abreast of the latest applications.

Geometric Computing

Author: Eduardo Bayro Corrochano
Publisher: Springer
ISBN: 1848829280
Release Date: 2010-04-01
Genre: Computers

This book offers a gentle introduction to Clifford geometric algebra, an advanced mathematical framework, for applications in perception action systems. Part I, is written in an accessible way allowing readers to easily grasp the mathematical system of Clifford algebra. Part II presents related topics. While Part 3 features practical applications for Computer Vision, Robotics, Image Processing and Neural Computing. Topics and Features include: theory and application of the quaternion Fourier and wavelet transforms, thorough discussion on geometric computing under uncertainty, an entire chapter devoted to the useful conformal geometric algebra, presents examples and hints for the use of public domain computer programs for geometric algebra. The modern framework for geometric computing highlighted will be of great use for communities working on image processing, computer vision, artificial intelligence, neural networks, neuroscience, robotics, control engineering, human and robot interfaces, haptics and humanoids.

Clifford Geometric Algebras

Author: William Baylis
Publisher: Springer Science & Business Media
ISBN: 9781461241041
Release Date: 2012-12-06
Genre: Science

This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

Computer Vision

Author: Richard Szeliski
Publisher: Springer Science & Business Media
ISBN: 1848829353
Release Date: 2010-09-30
Genre: Computers

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Quantum Computation with Topological Codes

Author: Keisuke Fujii
Publisher: Springer
ISBN: 9789812879967
Release Date: 2015-12-15
Genre: Science

This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.