Cognitive Computing and Big Data Analytics

Author: Judith Hurwitz
Publisher: John Wiley & Sons
ISBN: 1118896629
Release Date: 2015-03-02
Genre: Computers

A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data. This book helps technologists understand cognitive computing′s underlying technologies, from knowledge representation techniques and natural language processing algorithms to dynamic learning approaches based on accumulated evidence, rather than reprogramming. Detailed case examples from the financial, healthcare, and manufacturing walk readers step–by–step through the design and testing of cognitive systems, and expert perspectives from organizations such as Cleveland Clinic, Memorial Sloan–Kettering, as well as commercial vendors that are creating solutions. These organizations provide insight into the real–world implementation of cognitive computing systems. The IBM Watson cognitive computing platform is described in a detailed chapter because of its significance in helping to define this emerging market. In addition, the book includes implementations of emerging projects from Qualcomm, Hitachi, Google and Amazon. Today′s cognitive computing solutions build on established concepts from artificial intelligence, natural language processing, ontologies, and leverage advances in big data management and analytics. They foreshadow an intelligent infrastructure that enables a new generation of customer and context–aware smart applications in all industries. Cognitive Computing is a comprehensive guide to the subject, providing both the theoretical and practical guidance technologists need. Discover how cognitive computing evolved from promise to reality Learn the elements that make up a cognitive computing system Understand the groundbreaking hardware and software technologies behind cognitive computing Learn to evaluate your own application portfolio to find the best candidates for pilot projects Leverage cognitive computing capabilities to transform the organization Cognitive systems are rightly being hailed as the new era of computing. Learn how these technologies enable emerging firms to compete with entrenched giants, and forward–thinking established firms to disrupt their industries. Professionals who currently work with big data and analytics will see how cognitive computing builds on their foundation, and creates new opportunities. Cognitive Computing provides complete guidance to this new level of human–machine interaction.

Big Data Analytics for Cloud IoT and Cognitive Computing

Author: Kai Hwang
Publisher: John Wiley & Sons
ISBN: 9781119247043
Release Date: 2017-03-13
Genre: Computers

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

Cloud Computing for Machine Learning and Cognitive Applications

Author: Kai Hwang
Publisher: MIT Press
ISBN: 9780262341127
Release Date: 2017-06-30
Genre: Computers

This is the first textbook to teach students how to build data analytic solutions on large data sets (specifically in Internet of Things applications) using cloud-based technologies for data storage, transmission and mashup, and AI techniques to analyze this data. This textbook is designed to train college students to master modern cloud computing systems in operating principles, architecture design, machine learning algorithms, programming models and software tools for big data mining, analytics, and cognitive applications. The book will be suitable for use in one-semester computer science or electrical engineering courses on cloud computing, machine learning, cloud programming, cognitive computing, or big data science. The book will also be very useful as a reference for professionals who want to work in cloud computing and data science. Cloud and Cognitive Computing begins with two introductory chapters on fundamentals of cloud computing, data science, and adaptive computing that lay the foundation for the rest of the book. Subsequent chapters cover topics including cloud architecture, mashup services, virtual machines, Docker containers, mobile clouds, IoT and AI, inter-cloud mashups, and cloud performance and benchmarks, with a focus on Google's Brain Project, DeepMind, and X-Lab programs, IBKai HwangM SyNapse, Bluemix programs, cognitive initiatives, and neurocomputers. The book then covers machine learning algorithms and cloud programming software tools and application development, applying the tools in machine learning, social media, deep learning, and cognitive applications. All cloud systems are illustrated with big data and cognitive application examples.

Big Data in der Praxis

Author: Jonas Freiknecht
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 9783446441774
Release Date: 2014-10-01
Genre: Computers

BIG DATA IN DER PRAXIS // - Für Analysten, BI-Verantwortliche, Data-Scientists, Consultants - Auf der DVD finden Sie: 18 fertige Projekte, die im Buch Schritt für Schritt entwickelt werden; Videotutorials u.a. zur Installation von Hadoop, Hive, HBase (Gesamtdauer: 80 Min.); Testdatensätze für die Wissensdatenbank Dieses Buch bringt Ihnen das Thema Big Data auf sehr praktische Art und Weise nahe. Sie lernen Technologien, Tools und Methoden kennen, entwickeln Beispiel-Lösungen und bekommen aufgezeigt, wie Sie bestehende Systeme vorausschauend auf die mit dem Big Data-Trend einhergehenden Herausforderungen vorbereiten. Dazu werden Sie neben den bekannten Apache-Projekten wie Hadoop, Hive und HBase auch einige weniger bekannte Frameworks wie Apache UIMA oder Apache OpenNLP kennenlernen, um gezielt die Verarbeitung unstrukturierter Daten zu behandeln. Alle hier verwendeten Software-Komponenten stehen im vollen Umfang kostenlos im Internet zur Verfügung. Gemeinsam mit dem Autor werden Sie ganz konkret Schritt für Schritt viele kleinere Projekte aufbauen bis hin zu einer fertigen und funktionstüchtigen Implementierung. Ziel des Buches ist es, Sie auf den Effekt und den Mehrwert der neuen Möglichkeiten aufmerksam zu machen, sodass Sie diese konstruktiv in Ihr Unternehmen tragen können und für sich und Ihre Kollegen somit ein Bewusstsein für den Wert Ihrer Daten schaffen. AUS DEM INHALT // Einführung rund um Big Data // Hadoop installieren, konfigurieren & bedienen // HDFS, Map-Reduce & YARN: Daten speichern und verarbeiten // Hadoop-Ecosystem: Überblick über dessen Komponenten // Einführung in NoSQL // HBase installieren, einrichten & auf Daten zugreifen // Data-Warehousing mit Apache Hive // HiveQL als Abfragesprache, Hive Security, Hive & JDBC // Datenimport aus relationalen Datenbanken mit Sqoop // Big Data-Visualisierung: Diagrammarten, Tipps & Trends // Visualisierungs-Frameworks im Vergleich // D3.js: Entwicklung einiger Beispieldiagramme // Entwicklung einer abschließenden Big Data-Analyse-Lösung // Troubleshooting für die Arbeit mit Hadoop, Hive & HBase

Data Science f r Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 9783527806751
Release Date: 2016-04-22
Genre: Mathematics

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Big Data

Author: Viktor Mayer-Schönberger
Publisher: Redline Wirtschaft
ISBN: 9783864144592
Release Date: 2013-10-08
Genre: Political Science

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Smart Data Analytics

Author: Andreas Wierse
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 9783110461916
Release Date: 2017-06-26
Genre: Technology & Engineering

Wenn in Datenbergen wertvolle Geheimnisse schlummern, aus denen Profit erzielt werden soll, dann geht es um Big Data. Doch wie schöpft man aus »großen Daten« echte Werte, wenn man nicht gerade Google ist? Um aus Unternehmens-, Maschinen- oder Sensordaten einen Ertrag zu erzielen, reicht Big Data-Technologie allein nicht aus. Entscheidend sind die übergeordneten Innovations prozesse: die smarte Analyse von Big Data. Erst durch den kompetenten Einsatz der richtigen Werkzeuge und Techniken werden aus Big Data tatsächlich Smart Data. Das Praxishandbuch Smart Data Analytics gibt einen Überblick über die Technologie, die bei der Analyse von großen und heterogenen Datenmengen – inklusive Echtzeitdaten – zum Einsatz kommt. Elf Praxisbeispiele zeigen die konkrete Anwendung in kleinen und mittelständischen Unternehmen. So erfahren Sie, wie Sie Ihr Smart Data Analytics-Projekt in Ihrem eigenen Unternehmen vorbereiten und umsetzen können. Das Buch erläutert neben den organisatorischen Aspekten auch die rechtlichen Rahmenbedingungen. Und es zeigt, wie Sie sowohl den Nutzen bewerten können, der aus den Daten gezogen werden soll, als auch den Aufwand, den Sie dafür betreiben müssen. Denn Smart Data steht für mehr als nur die Untersuchung großer Datenmengen: Smart Data Analytics ist der Schlüssel zu einem smarten Umgang mit Ihren Unternehmensdaten und hilft, bislang unentdecktes Potenzial zu entdecken. Dr. Andreas Wierse studierte Mathematik und promovierte in den Ingenieurwissenschaften im Bereich Visualisierung, seit 2011 unterstützt er mittelständische Unternehmen rund um Big und Smart Data Technologie. Dr. Till Riedel lehrt als Informatiker am KIT und koordiniert im Smart Data Solution Center Baden-Württemberg und Smart Data Innovation Lab Forschung und Innovation auf industriellen Datenschätzen.

Fuzzy Systeme

Author: Frank Klawonn
Publisher: Springer-Verlag
ISBN: 9783322867841
Release Date: 2013-03-08
Genre: Technology & Engineering


big data work

Author: Thomas H. Davenport
Publisher: Vahlen
ISBN: 9783800648153
Release Date: 2014-10-15
Genre: Fiction

Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.

Datenanalyse mit Python

Author: Wes McKinney
Publisher: O'Reilly
ISBN: 9783960102144
Release Date: 2018-10-29
Genre: Computers

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Big Data Analytics in Cybersecurity and IT Management

Author: Onur Savas
Publisher:
ISBN: 1315154374
Release Date: 2017
Genre: Big data

The power of big data in cybersecurity -- Big data analytics for network forensics -- Dynamic analytics-driven assessment of vulnerabilities and exploitation -- Big data analytics for mobile app security -- Machine unlearning: repairing learning models in adversarial -- Environments -- Cybersecurity training -- Machine unlearning: repairing learning models in adversarial environments -- Big data analytics for mobile app security -- Security, privacy and trust in cloud computing: challenges and solutions -- Cybersecurity in internet of things (IOT) -- Data visualization for cyber security -- Analyzing deviant socio-technical behaviors using social network analysis and cyber forensics-based methodologies -- Security tools -- Data and research initiatives for cybersecurity analysis

The Second Machine Age

Author: Erik Brynjolfsson
Publisher: Plassen Verlag
ISBN: 9783864702228
Release Date: 2014-10-01
Genre: Political Science

Computer sind mittlerweile so intelligent geworden, dass die nächste industrielle Revolution unmittelbar bevorsteht. Wer profitiert, wer verliert? Antworten auf diese Fragen bietet das neue Buch der Technologie-Profis Erik Brynjolfsson und Andrew McAfee. Seit Jahren arbeiten wir mit Computern - und Computer für uns. Mittlerweile sind die Maschinen so intelligent geworden, dass sie zu Leistungen fähig sind, die vor Kurzem noch undenkbar waren: Sie fahren Auto, sie schreiben eigene Texte - und sie besiegen Großmeister im Schach. Dieser Entwicklungssprung ist nur der Anfang. In ihrem neuen Buch zeigen zwei renommierte Professoren, welch atemberaubende Entwicklungen uns noch bevorstehen: Die zweite industrielle Revolution kommt! Welche Auswirkungen wird das haben? Welche Chancen winken, welche Risiken drohen? Was geschieht dabei mit den Menschen, was mit der Umwelt? Und was werden Gesellschaft und Politik tun, um die Auswirkungen dieser "neuen digitalen Intelligenz" für alle bestmöglich zu gestalten? Dieses Buch nimmt Sie mit auf eine Reise in eine Zukunft, die schon längst begonnen hat.