Compact Complex Surfaces

Author: W. Barth
Publisher: Springer
ISBN: 9783642577390
Release Date: 2015-05-22
Genre: Mathematics

In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.

Positivity in Algebraic Geometry I

Author: R.K. Lazarsfeld
Publisher: Springer Science & Business Media
ISBN: 3540225331
Release Date: 2004-08-24
Genre: Mathematics

This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Modern Geometry A Celebration of the Work of Simon Donaldson

Author: Vicente Muñoz
Publisher: American Mathematical Soc.
ISBN: 9781470440947
Release Date: 2018-09-05
Genre: Four-manifolds (Topology)

This book contains a collection of survey articles of exciting new developments in geometry, written in tribute to Simon Donaldson to celebrate his 60th birthday. Reflecting the wide range of Donaldson's interests and influence, the papers range from algebraic geometry and topology through symplectic geometry and geometric analysis to mathematical physics. Their expository nature means the book acts as an invitation to the various topics described, while also giving a sense of the links between these different areas and the unity of modern geometry.

Arithmetic of L functions

Author: Cristian Popescu
Publisher: American Mathematical Soc.
ISBN: 9780821886984
Release Date: 2011
Genre: Mathematics

The overall theme of the 2009 IAS/PCMI Graduate Summer School was connections between special values of $L$-functions and arithmetic, especially the Birch and Swinnerton-Dyer Conjecture and Stark's Conjecture. These conjectures are introduced and discussed in depth, and progress made over the last 30 years is described. This volume contains the written versions of the graduate courses delivered at the summer school. It would be a suitable text for advanced graduate topics courses on the Birch and Swinnerton-Dyer Conjecture and/or Stark's Conjecture. The book will also serve as a reference volume for experts in the field.

Cohomological Aspects in Complex Non K hler Geometry

Author: Daniele Angella
Publisher: Springer
ISBN: 9783319024417
Release Date: 2013-11-22
Genre: Mathematics

In these notes, we provide a summary of recent results on the cohomological properties of compact complex manifolds not endowed with a Kähler structure. On the one hand, the large number of developed analytic techniques makes it possible to prove strong cohomological properties for compact Kähler manifolds. On the other, in order to further investigate any of these properties, it is natural to look for manifolds that do not have any Kähler structure. We focus in particular on studying Bott-Chern and Aeppli cohomologies of compact complex manifolds. Several results concerning the computations of Dolbeault and Bott-Chern cohomologies on nilmanifolds are summarized, allowing readers to study explicit examples. Manifolds endowed with almost-complex structures, or with other special structures (such as, for example, symplectic, generalized-complex, etc.), are also considered.

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura
Publisher: Springer Science & Business Media
ISBN: 9781461418092
Release Date: 2012-02-15
Genre: Mathematics

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.

Stein Manifolds and Holomorphic Mappings

Author: Franc Forstnerič
Publisher: Springer
ISBN: 9783319610580
Release Date: 2017-09-05
Genre: Mathematics

This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups./div

Foliations on Surfaces

Author: Igor Nikolaev
Publisher: Springer Science & Business Media
ISBN: 9783662045244
Release Date: 2013-03-14
Genre: Mathematics

This book presents a comprehensive, encyclopedic approach to the subject of foliations, one of the major concepts of modern geometry and topology. It addresses graduate students and researchers and serves as a reference book for experts in the field.

Cartesian Currents in the Calculus of Variations I

Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 3540640096
Release Date: 1998-08-19
Genre: Mathematics

Non-scalar variational problems appear in different fields. In geometry, for in­ stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial.

Convex Bodies and Algebraic Geometry

Author: Tadao Oda
Publisher: Springer
ISBN: 364272549X
Release Date: 2012-02-23
Genre: Mathematics

The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.

Smooth Four Manifolds and Complex Surfaces

Author: Robert Friedman
Publisher: Springer Science & Business Media
ISBN: 9783662030288
Release Date: 2013-03-09
Genre: Mathematics

In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions.

Compact Manifolds with Special Holonomy

Author: Dominic D. Joyce
Publisher: Oxford University Press on Demand
ISBN: 0198506015
Release Date: 2000
Genre: Mathematics

This is a combination of a graduate textbook on Riemannian holonomy groups, and a research monograph on compact manifolds with the exceptional holonomy groups G2 and Spin (7). It is the first book on compact manifolds with exceptional holonomy, and contains much new research material and many new examples.

Quadratic Differentials

Author: K. Strebel
Publisher: Springer Science & Business Media
ISBN: 9783662024140
Release Date: 2013-03-09
Genre: Mathematics

A quadratic differential on aRiemann surface is locally represented by a ho lomorphic function element wh ich transforms like the square of a derivative under a conformal change of the parameter. More generally, one also allows for meromorphic function elements; however, in many considerations it is con venient to puncture the surface at the poles of the differential. One is then back at the holomorphic case. A quadratic differential defines, in a natural way, a field of line elements on the surface, with singularities at the critical points, i.e. the zeros and poles of the differential. The integral curves of this field are called the trajectories of the differential. A large part of this book is about the trajectory structure of quadratic differentials. There are of course local and global aspects to this structure. Be sides, there is the behaviour of an individual trajectory and the structure deter mined by entire subfamilies of trajectories. An Abelian or first order differential has an integral or primitive function is in general not single-valued. In the case of a quadratic on the surface, which differential, one first has to take the square root and then integrate. The local integrals are only determined up to their sign and arbitrary additive constants. However, it is this multivalued function which plays an important role in the theory; the trajectories are the images of the horizontals by single valued branches of its inverse.