Computability

Author: Richard L. Epstein
Publisher:
ISBN: 098155072X
Release Date: 2008
Genre: Mathematics

This classic presentation of the theory of computable functions includes discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number.

Business Research Methodology With Cd

Author: Srivastava
Publisher: Tata McGraw-Hill Education
ISBN: 9781259081903
Release Date: 1958
Genre: Business

Classic graduate-level introduction to theory of computability. Discusses general theory of computability, computable functions, operations on computable functions, Turing machines self-applied, unsolvable decision problems, applications of general theory, mathematical logic, Kleene hierarchy, more.

Handbook of Computability Theory

Author: E.R. Griffor
Publisher: Elsevier
ISBN: 0080533043
Release Date: 1999-10-01
Genre: Mathematics

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

The Undecidable

Author: Martin Davis
Publisher: Courier Corporation
ISBN: 0486432289
Release Date: 2004
Genre: Mathematics

"A valuable collection both for original source material as well as historical formulations of current problems." — The Review of Metaphysics "Much more than a mere collection of papers. A valuable addition to the literature." — Mathematics of Computation An anthology of fundamental papers on undecidability and unsolvability by major figures in the field , this classic reference is ideally suited as a text for graduate and undergraduate courses in logic, philosophy, and foundations of mathematics. It is also appropriate for self-study. The text opens with Godel's landmark 1931 paper demonstrating that systems of logic cannot admit proofs of all true assertions of arithmetic. Subsequent papers by Godel, Church, Turing, and Post single out the class of recursive functions as computable by finite algorithms. Additional papers by Church, Turing, and Post cover unsolvable problems from the theory of abstract computing machines, mathematical logic, and algebra, and material by Kleene and Post includes initiation of the classification theory of unsolvable problems. Supplementary items include corrections, emendations, and added commentaries by Godel, Church, and Kleene for this volume's original publication, along with a helpful commentary by the editor.

Martin Davis on Computability Computational Logic and Mathematical Foundations

Author: Eugenio G. Omodeo
Publisher: Springer
ISBN: 9783319418421
Release Date: 2017-03-03
Genre: Philosophy

This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.

The Foundations of Computability Theory

Author: Borut Robič
Publisher: Springer
ISBN: 9783662448083
Release Date: 2015-09-14
Genre: Computers

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Handbook of Computability Theory

Author: E.R. Griffor
Publisher: Elsevier
ISBN: 0080533043
Release Date: 1999-10-01
Genre: Mathematics

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

Proofs and Algorithms

Author: Gilles Dowek
Publisher: Springer Science & Business Media
ISBN: 0857291211
Release Date: 2011-01-11
Genre: Computers

Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.

Classical Recursion Theory

Author: P. Odifreddi
Publisher: Elsevier
ISBN: 0080886590
Release Date: 1992-02-04
Genre: Computers

1988 marked the first centenary of Recursion Theory, since Dedekind's 1888 paper on the nature of number. Now available in paperback, this book is both a comprehensive reference for the subject and a textbook starting from first principles. Among the subjects covered are: various equivalent approaches to effective computability and their relations with computers and programming languages; a discussion of Church's thesis; a modern solution to Post's problem; global properties of Turing degrees; and a complete algebraic characterization of many-one degrees. Included are a number of applications to logic (in particular Gödel's theorems) and to computer science, for which Recursion Theory provides the theoretical foundation.

An Introduction to G del s Theorems

Author: Peter Smith
Publisher: Cambridge University Press
ISBN: 1139465937
Release Date: 2007-07-26
Genre: Mathematics

In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.

Generative Social Science Studies in Agent Based Computational Modeling

Author: Joshua M. Epstein
Publisher: Princeton University Press
ISBN: 9781400842872
Release Date: 2012-01-02
Genre: Business & Economics

Agent-based computational modeling is changing the face of social science. In Generative Social Science, Joshua Epstein argues that this powerful, novel technique permits the social sciences to meet a fundamentally new standard of explanation, in which one "grows" the phenomenon of interest in an artificial society of interacting agents: heterogeneous, boundedly rational actors, represented as mathematical or software objects. After elaborating this notion of generative explanation in a pair of overarching foundational chapters, Epstein illustrates it with examples chosen from such far-flung fields as archaeology, civil conflict, the evolution of norms, epidemiology, retirement economics, spatial games, and organizational adaptation. In elegant chapter preludes, he explains how these widely diverse modeling studies support his sweeping case for generative explanation. This book represents a powerful consolidation of Epstein's interdisciplinary research activities in the decade since the publication of his and Robert Axtell's landmark volume, Growing Artificial Societies. Beautifully illustrated, Generative Social Science includes a CD that contains animated movies of core model runs, and programs allowing users to easily change assumptions and explore models, making it an invaluable text for courses in modeling at all levels.

Introduction to Mathematical Logic

Author: Jerome Malitz
Publisher: Springer Science & Business Media
ISBN: 9781461394419
Release Date: 2012-12-06
Genre: Mathematics

This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel oped step by step with hints in the problems. Such theorems are not used later in the sequence.

Computability and Randomness

Author: André Nies
Publisher: OUP Oxford
ISBN: 9780191627880
Release Date: 2012-03-29
Genre: Philosophy

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.