Computability

Author: Richard L. Epstein
Publisher:
ISBN: 098155072X
Release Date: 2008
Genre: Mathematics

This classic presentation of the theory of computable functions includes discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number.

Handbook of Computability Theory

Author: E.R. Griffor
Publisher: Elsevier
ISBN: 0080533043
Release Date: 1999-10-01
Genre: Mathematics

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

Business Research Methodology With Cd

Author: Srivastava
Publisher: Tata McGraw-Hill Education
ISBN: 9781259081903
Release Date: 1958
Genre: Business

Classic graduate-level introduction to theory of computability. Discusses general theory of computability, computable functions, operations on computable functions, Turing machines self-applied, unsolvable decision problems, applications of general theory, mathematical logic, Kleene hierarchy, more.

The Undecidable

Author: Martin Davis
Publisher: Courier Corporation
ISBN: 0486432289
Release Date: 2004
Genre: Mathematics

"A valuable collection both for original source material as well as historical formulations of current problems." — The Review of Metaphysics "Much more than a mere collection of papers. A valuable addition to the literature." — Mathematics of Computation An anthology of fundamental papers on undecidability and unsolvability by major figures in the field , this classic reference is ideally suited as a text for graduate and undergraduate courses in logic, philosophy, and foundations of mathematics. It is also appropriate for self-study. The text opens with Godel's landmark 1931 paper demonstrating that systems of logic cannot admit proofs of all true assertions of arithmetic. Subsequent papers by Godel, Church, Turing, and Post single out the class of recursive functions as computable by finite algorithms. Additional papers by Church, Turing, and Post cover unsolvable problems from the theory of abstract computing machines, mathematical logic, and algebra, and material by Kleene and Post includes initiation of the classification theory of unsolvable problems. Supplementary items include corrections, emendations, and added commentaries by Godel, Church, and Kleene for this volume's original publication, along with a helpful commentary by the editor.

Predicate Logic

Author: Richard L. Epstein
Publisher: Wadsworth Publishing Company
ISBN: UCSC:32106016862713
Release Date: 2001
Genre: Philosophy

A presentation of the fundamental ideas that generate the formal systems of predicate logic. This text clearly relates predicate logic to reasoning in ordinary language, with hundreds of examples of formalization, with a clear theory of how to formalize ordinary arguments. The writing is exceptionally clear and easy to read.

Classical Recursion Theory

Author: P. Odifreddi
Publisher: Elsevier
ISBN: 0080886590
Release Date: 1992-02-04
Genre: Computers

1988 marked the first centenary of Recursion Theory, since Dedekind's 1888 paper on the nature of number. Now available in paperback, this book is both a comprehensive reference for the subject and a textbook starting from first principles. Among the subjects covered are: various equivalent approaches to effective computability and their relations with computers and programming languages; a discussion of Church's thesis; a modern solution to Post's problem; global properties of Turing degrees; and a complete algebraic characterization of many-one degrees. Included are a number of applications to logic (in particular Gödel's theorems) and to computer science, for which Recursion Theory provides the theoretical foundation.

Computability and Randomness

Author: André Nies
Publisher: OUP Oxford
ISBN: 9780191627880
Release Date: 2012-03-29
Genre: Philosophy

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.

Martin Davis on Computability Computational Logic and Mathematical Foundations

Author: Eugenio G. Omodeo
Publisher: Springer
ISBN: 9783319418421
Release Date: 2017-03-03
Genre: Philosophy

This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.

Computability Theory

Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 0123849594
Release Date: 2010-12-30
Genre: Computers

Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory

The Foundations of Computability Theory

Author: Borut Robič
Publisher: Springer
ISBN: 9783662448083
Release Date: 2015-09-14
Genre: Computers

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

An Early History of Recursive Functions and Computability

Author: Rod Adams
Publisher: Docent Press
ISBN: 9780983700401
Release Date: 2011
Genre: Computable functions

Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.

Theories of Computability

Author: Nicholas Pippenger
Publisher: Cambridge University Press
ISBN: 0521553806
Release Date: 1997-05-28
Genre: Computers

A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.

Computability in Analysis and Physics

Author: Marian B. Pour-El
Publisher: Cambridge University Press
ISBN: 9781107168442
Release Date: 2017-03-02
Genre: Mathematics

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the first publication in the Perspectives in Logic series, Pour-El and Richards present the first graduate-level treatment of computable analysis within the tradition of classical mathematical reasoning. The book focuses on the computability or noncomputability of standard processes in analysis and physics. Topics include classical analysis, Hilbert and Banach spaces, bounded and unbounded linear operators, eigenvalues, eigenvectors, and equations of mathematical physics. The work is self-contained, and although it is intended primarily for logicians and analysts, it should also be of interest to researchers and graduate students in physics and computer science.

Slicing the Truth

Author: Denis R Hirschfeldt
Publisher: World Scientific
ISBN: 9789814612630
Release Date: 2014-07-18
Genre: Mathematics

This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions. Contents:Setting Off: An IntroductionGathering Our Tools: Basic Concepts and NotationFinding Our Path: König's Lemma and ComputabilityGauging Our Strength: Reverse MathematicsIn Defense of DisarrayAchieving Consensus: Ramsey's TheoremPreserving Our Power: ConservativityDrawing a Map: Five DiagramsExploring Our Surroundings: The World Below RT22Charging Ahead: Further TopicsLagniappe: A Proof of Liu's Theorem Readership: Graduates and researchers in mathematical logic. Key Features:This book assumes minimal background in mathematical logic and takes the reader all the way to current research in a highly active areaIt is the first detailed introduction to this particular approach to this area of researchThe combination of fully worked out arguments and exercises make this book well suited to self-study by graduate students and other researchers unfamiliar with the areaKeywords:Reverse Mathematics;Computability Theory;Computable Mathematics;Computable Combinatorics