Computability Theory

Author: S. Barry Cooper
Publisher: CRC Press
ISBN: 9781351991964
Release Date: 2017-09-06
Genre: Mathematics

Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.

Computability Theory

Author: Rebecca Weber
Publisher: American Mathematical Soc.
ISBN: 9780821873922
Release Date: 2012
Genre: Mathematics

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

The Incomputable

Author: S. Barry Cooper
Publisher: Springer
ISBN: 9783319436692
Release Date: 2017-05-02
Genre: Computers

This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.

Computability Theory Second Edition

Author: S. Barry Cooper
Publisher: Chapman and Hall/CRC
ISBN: 1439838437
Release Date: 2015-12-15
Genre: Mathematics

Designed for advanced undergraduate or beginning graduate students, this book provides a complete introduction to computability theory. This second edition includes new material on hyperarithmetical and Borel sets as well as more material on computability of structures, Pi-0-1 classes, and computability in science. It features an expanded treatment of complexity of computations and updated future directions in computability. In addition, the section on randomness is now a separate chapter. The author also discusses advanced topics in greater depth, including Post’s problem, forcing and category, applications of determinacy, and the computability of theories.

Mathematical and Algorithmic Foundations of the Internet

Author: Fabrizio Luccio
Publisher: CRC Press
ISBN: 9781439831380
Release Date: 2011-07-06
Genre: Computers

To truly understand how the Internet and Web are organized and function requires knowledge of mathematics and computation theory. Mathematical and Algorithmic Foundations of the Internet introduces the concepts and methods upon which computer networks rely and explores their applications to the Internet and Web. The book offers a unique approach to mathematical and algorithmic concepts, demonstrating their universality by presenting ideas and examples from various fields, including literature, history, and art. Progressing from fundamental concepts to more specific topics and applications, the text covers computational complexity and randomness, networks and graphs, parallel and distributed computing, and search engines. While the mathematical treatment is rigorous, it is presented at a level that can be grasped by readers with an elementary mathematical background. The authors also present a lighter side to this complex subject by illustrating how many of the mathematical concepts have counterparts in everyday life. The book provides in-depth coverage of the mathematical prerequisites and assembles a complete presentation of how computer networks function. It is a useful resource for anyone interested in the inner functioning, design, and organization of the Internet.

Computability and Complexity Theory

Author: Steven Homer
Publisher: Springer Science & Business Media
ISBN: 9781461406815
Release Date: 2011-12-09
Genre: Computers

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes

Computability Theory

Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 0123849594
Release Date: 2010-12-30
Genre: Computers

Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory

Computability and Randomness

Author: André Nies
Publisher: OUP Oxford
ISBN: 9780191627880
Release Date: 2012-03-29
Genre: Philosophy

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.

Computability

Author: Richard L. Epstein
Publisher:
ISBN: 098155072X
Release Date: 2008
Genre: Mathematics

This classic presentation of the theory of computable functions includes discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number.

Quantifiers and Cognition Logical and Computational Perspectives

Author: Jakub Szymanik
Publisher: Springer
ISBN: 9783319287492
Release Date: 2016-02-19
Genre: Language Arts & Disciplines

This volume on the semantic complexity of natural language explores the question why some sentences are more difficult than others. While doing so, it lays the groundwork for extending semantic theory with computational and cognitive aspects by combining linguistics and logic with computations and cognition. Quantifier expressions occur whenever we describe the world and communicate about it. Generalized quantifier theory is therefore one of the basic tools of linguistics today, studying the possible meanings and the inferential power of quantifier expressions by logical means. The classic version was developed in the 1980s, at the interface of linguistics, mathematics and philosophy. Before this volume, advances in "classic" generalized quantifier theory mainly focused on logical questions and their applications to linguistics, this volume adds a computational component, the third pillar of language use and logical activity. This book is essential reading for researchers in linguistics, philosophy, cognitive science, logic, AI, and computer science.

Algorithms and Theory of Computation Handbook

Author: Mikhail J. Atallah
Publisher: CRC Press
ISBN: 142004950X
Release Date: 1998-11-23
Genre: Computers

Algorithms and Theory of Computation Handbook is a comprehensive collection of algorithms and data structures that also covers many theoretical issues. It offers a balanced perspective that reflects the needs of practitioners, including emphasis on applications within discussions on theoretical issues. Chapters include information on finite precision issues as well as discussion of specific algorithms where algorithmic techniques are of special importance, including graph drawing, robotics, forming a VLSI chip, vision and image processing, data compression, and cryptography. The book also presents some advanced topics in combinatorial optimization and parallel/distributed computing. • applications areas where algorithms and data structuring techniques are of special importance • graph drawing • robot algorithms • VLSI layout • vision and image processing algorithms • scheduling • electronic cash • data compression • dynamic graph algorithms • on-line algorithms • multidimensional data structures • cryptography • advanced topics in combinatorial optimization and parallel/distributed computing

Introduction to Mathematical Logic Sixth Edition

Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 9781482237788
Release Date: 2015-05-21
Genre: Mathematics

The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing. The sixth edition incorporates recent work on Gödel’s second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in the new edition for historical considerations. The text also offers historical perspectives and many new exercises of varying difficulty, which motivate and lead students to an in-depth, practical understanding of the material.

Theory and Applications of Models of Computation

Author: Manindra Agrawal
Publisher: Springer
ISBN: 9783540792284
Release Date: 2008-04-30
Genre: Computers

This proceedings volume examines all major areas in computer science, mathematics (especially logic) and the physical sciences, especially computation, algorithms, complexity and computability theory.

Computability and Logic

Author: George S. Boolos
Publisher: Cambridge University Press
ISBN: 9781107049277
Release Date: 2007-09-17
Genre: Philosophy

Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This 2007 fifth edition has been thoroughly revised by John Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems. This updated edition is also accompanied by a website as well as an instructor's manual.

Cylindric like Algebras and Algebraic Logic

Author: Hajnal Andreka
Publisher: Springer Science & Business Media
ISBN: 9783642350252
Release Date: 2014-01-27
Genre: Mathematics

Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.​