Cryptography Made Simple

Author: Nigel Smart
Publisher: Springer
ISBN: 9783319219363
Release Date: 2015-11-12
Genre: Computers

In this introductory textbook the author explains the key topics in cryptography. He takes a modern approach, where defining what is meant by "secure" is as important as creating something that achieves that goal, and security definitions are central to the discussion throughout. The author balances a largely non-rigorous style — many proofs are sketched only — with appropriate formality and depth. For example, he uses the terminology of groups and finite fields so that the reader can understand both the latest academic research and "real-world" documents such as application programming interface descriptions and cryptographic standards. The text employs colour to distinguish between public and private information, and all chapters include summaries and suggestions for further reading. This is a suitable textbook for advanced undergraduate and graduate students in computer science, mathematics and engineering, and for self-study by professionals in information security. While the appendix summarizes most of the basic algebra and notation required, it is assumed that the reader has a basic knowledge of discrete mathematics, probability, and elementary calculus.

Cryptography Made Simple

Author: Nigel P. Smart
Publisher: Springer
ISBN: 3319219359
Release Date: 2015-11-20
Genre: Computers

In this introductory textbook the author explains the key topics in cryptography. He takes a modern approach, where defining what is meant by "secure" is as important as creating something that achieves that goal, and security definitions are central to the discussion throughout. The chapters in Part 1 offer a brief introduction to the mathematical foundations: modular arithmetic, groups, finite fields, and probability; primality testing and factoring; discrete logarithms; elliptic curves; and lattices. Part 2 of the book shows how historical ciphers were broken, thus motivating the design of modern cryptosystems since the 1960s; this part also includes a chapter on information-theoretic security. Part 3 covers the core aspects of modern cryptography: the definition of security; modern stream ciphers; block ciphers and modes of operation; hash functions, message authentication codes, and key derivation functions; the "naive" RSA algorithm; public key encryption and signature algorithms; cryptography based on computational complexity; and certificates, key transport and key agreement. Finally, Part 4 addresses advanced prot ocols, where the parties may have different or even conflicting security goals: secret sharing schemes; commitments and oblivious transfer; zero-knowledge proofs; and secure multi-party computation. The author balances a largely non-rigorous style — many proofs are sketched only — with appropriate formality and depth. For example, he uses the terminology of groups and finite fields so that the reader can understand both the latest academic research and "real-world" documents such as application programming interface descriptions and cryptographic standards. The text employs colour to distinguish between public and private information, and all chapters include summaries and suggestions for further reading. This is a suitable textbook for advanced undergraduate and graduate students in computer science, mathematics and engineering, and for self-study by professionals in information security. While the appendix summarizes most of the basic algebra and notation required, it is assumed that the reader has a basic knowledge of discrete mathematics, probability, and elementary calculus.

Algebraic Aspects of Cryptography

Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 9783662036426
Release Date: 2012-12-06
Genre: Computers

From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. [...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews

Guide to Elliptic Curve Cryptography

Author: Darrel Hankerson
Publisher: Springer Science & Business Media
ISBN: 9780387218465
Release Date: 2006-06-01
Genre: Computers

After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic * Distills complex mathematics and algorithms for easy understanding * Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software tools This comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.

Introduction to Cryptography with Mathematical Foundations and Computer Implementations

Author: Alexander Stanoyevitch
Publisher: CRC Press
ISBN: 9781439817636
Release Date: 2010-08-09
Genre: Computers

From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.

Understanding Cryptography

Author: Christof Paar
Publisher: Springer Science & Business Media
ISBN: 3642041019
Release Date: 2009-11-27
Genre: Computers

Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.

The Block Cipher Companion

Author: Lars R. Knudsen
Publisher: Springer Science & Business Media
ISBN: 9783642173424
Release Date: 2011-10-25
Genre: Computers

Block ciphers encrypt blocks of plaintext, messages, into blocks of ciphertext under the action of a secret key, and the process of encryption is reversed by decryption which uses the same user-supplied key. Block ciphers are fundamental to modern cryptography, in fact they are the most widely used cryptographic primitive – useful in their own right, and in the construction of other cryptographic mechanisms. In this book the authors provide a technically detailed, yet readable, account of the state of the art of block cipher analysis, design, and deployment. The authors first describe the most prominent block ciphers and give insights into their design. They then consider the role of the cryptanalyst, the adversary, and provide an overview of some of the most important cryptanalytic methods. The book will be of value to graduate and senior undergraduate students of cryptography and to professionals engaged in cryptographic design. An important feature of the presentation is the authors' exhaustive bibliography of the field, each chapter closing with comprehensive supporting notes.

Cryptography for Security and Privacy in Cloud Computing

Author: Stefan Rass
Publisher: Artech House
ISBN: 9781608075751
Release Date: 2013-11-01
Genre: Computers

As is common practice in research, many new cryptographic techniques have been developed to tackle either a theoretical question or foreseeing a soon to become reality application. Cloud computing is one of these new areas, where cryptography is expected to unveil its power by bringing striking new features to the cloud. Cloud computing is an evolving paradigm, whose basic attempt is to shift computing and storage capabilities to external service providers. This resource offers an overview of the possibilities of cryptography for protecting data and identity information, much beyond well-known cryptographic primitives such as encryption or digital signatures. This book represents a compilation of various recent cryptographic primitives, providing readers with the features and limitations of each.

Introduction to Cryptography

Author: Hans Delfs
Publisher: Springer
ISBN: 9783662479742
Release Date: 2015-09-29
Genre: Computers

The first part of this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. In the second edition the authors added a complete description of the AES, an extended section on cryptographic hash functions, and new sections on random oracle proofs and public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks. The third edition is a further substantive extension, with new topics added, including: elliptic curve cryptography; Paillier encryption; quantum cryptography; the new SHA-3 standard for cryptographic hash functions; a considerably extended section on electronic elections and Internet voting; mix nets; and zero-knowledge proofs of shuffles. The book is appropriate for undergraduate and graduate students in computer science, mathematics, and engineering.

Encryption Made Simple for Lawyers

Author: Sharon D. Nelson
Publisher:
ISBN: 1634250583
Release Date: 2016-01-07
Genre: Computers

Accomplished authors Sharon D. Nelson, David G. Ries and John W. Simek will cover everything you need to know about encryption, breaking down the myths of security and putting the power to protect sensitive data in your hands.

Mathematics of Public Key Cryptography

Author: Steven D. Galbraith
Publisher: Cambridge University Press
ISBN: 9781107013926
Release Date: 2012-03-15
Genre: Computers

This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.

Cryptography

Author: Nigel Paul Smart
Publisher:
ISBN: 0077099877
Release Date: 2003
Genre: Computer security

Nigel Smart's Cryptography provides the rigorous detail required for advanced cryptographic studies, yet approaches the subject matter in an accessible style in order to gently guide new students through difficult mathematical topics.

Simple Steps to Data Encryption

Author: Peter Loshin
Publisher: Newnes
ISBN: 9780124078826
Release Date: 2013-04-30
Genre: Computers

Everyone wants privacy and security online, something that most computer users have more or less given up on as far as their personal data is concerned. There is no shortage of good encryption software, and no shortage of books, articles and essays that purport to be about how to use it. Yet there is precious little for ordinary users who want just enough information about encryption to use it safely and securely and appropriately--WITHOUT having to become experts in cryptography. Data encryption is a powerful tool, if used properly. Encryption turns ordinary, readable data into what looks like gibberish, but gibberish that only the end user can turn back into readable data again. The difficulty of encryption has much to do with deciding what kinds of threats one needs to protect against and then using the proper tool in the correct way. It's kind of like a manual transmission in a car: learning to drive with one is easy; learning to build one is hard. The goal of this title is to present just enough for an average reader to begin protecting his or her data, immediately. Books and articles currently available about encryption start out with statistics and reports on the costs of data loss, and quickly get bogged down in cryptographic theory and jargon followed by attempts to comprehensively list all the latest and greatest tools and techniques. After step-by-step walkthroughs of the download and install process, there's precious little room left for what most readers really want: how to encrypt a thumb drive or email message, or digitally sign a data file. There are terabytes of content that explain how cryptography works, why it's important, and all the different pieces of software that can be used to do it; there is precious little content available that couples concrete threats to data with explicit responses to those threats. This title fills that niche. By reading this title readers will be provided with a step by step hands-on guide that includes: Simple descriptions of actual threat scenarios Simple, step-by-step instructions for securing data How to use open source, time-proven and peer-reviewed cryptographic software Easy to follow tips for safer computing Unbiased and platform-independent coverage of encryption tools and techniques Simple descriptions of actual threat scenarios Simple, step-by-step instructions for securing data How to use open source, time-proven and peer-reviewed cryptographic software Easy-to-follow tips for safer computing Unbiased and platform-independent coverage of encryption tools and techniques

Cryptography and Network Security

Author: William Stallings
Publisher: Pearson
ISBN: 9780134484525
Release Date: 2016-02-18
Genre: Computers

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Principles and Practice of Cryptography and Network Security Stallings’ Cryptography and Network Security, Seventh Edition, introduces the reader to the compelling and evolving field of cryptography and network security. In an age of viruses and hackers, electronic eavesdropping, and electronic fraud on a global scale, security is paramount. The purpose of this book is to provide a practical survey of both the principles and practice of cryptography and network security. In the first part of the book, the basic issues to be addressed by a network security capability are explored by providing a tutorial and survey of cryptography and network security technology. The latter part of the book deals with the practice of network security: practical applications that have been implemented and are in use to provide network security. The Seventh Edition streamlines subject matter with new and updated material — including Sage, one of the most important features of the book. Sage is an open-source, multiplatform, freeware package that implements a very powerful, flexible, and easily learned mathematics and computer algebra system. It provides hands-on experience with cryptographic algorithms and supporting homework assignments. With Sage, the reader learns a powerful tool that can be used for virtually any mathematical application. The book also provides an unparalleled degree of support for the reader to ensure a successful learning experience.

Tutorials on the Foundations of Cryptography

Author: Yehuda Lindell
Publisher: Springer
ISBN: 9783319570488
Release Date: 2017-04-05
Genre: Computers

This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.