Data Analysis

Author: Devinderjit Sivia
Publisher: Oxford University Press
ISBN: 9780198568315
Release Date: 2006-06-01
Genre: Mathematics

Statistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis. This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. Other topics covered include reliability analysis, multivariate optimization, least-squares and maximum likelihood, error-propagation, hypothesis testing, maximum entropy and experimental design. The Second Edition of this successful tutorial book contains a new chapter on extensions to the ubiquitous least-squares procedure, allowing for the straightforward handling of outliers and unknown correlated noise, and a cutting-edge contribution from John Skilling on a novel numerical technique for Bayesian computation called 'nested sampling'.

Doing Bayesian Data Analysis

Author: John Kruschke
Publisher: Academic Press
ISBN: 0123814863
Release Date: 2010-11-25
Genre: Mathematics

There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and ‘rusty’ calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and BUGS software Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). Coverage of experiment planning R and BUGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment

Bayesian Logical Data Analysis for the Physical Sciences

Author: Phil Gregory
Publisher: Cambridge University Press
ISBN: 9781139444286
Release Date: 2005-04-14
Genre: Mathematics

Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at

Exoplanet Atmospheres

Author: Sara Seager
Publisher: Princeton University Press
ISBN: 1400835305
Release Date: 2010-08-02
Genre: Science

Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major physical processes that govern all planetary atmospheres. Moving from first principles to cutting-edge research, Exoplanet Atmospheres is an ideal resource for students and researchers in astronomy and earth sciences, one that will help prepare them for the next generation of planetary science. The first textbook to describe exoplanet atmospheres Illustrates concepts using examples grounded in real data Provides a step-by-step guide to understanding the structure and emergent spectrum of a planetary atmosphere Includes exercises for students

Bayes Rule

Author: James V. Stone
Publisher: Sebtel Press
ISBN: 9780956372840
Release Date: 2013-06-01
Genre: Bayesian statistical decision theory

In this richly illustrated book, a range of accessible examples are used to show how Bayes' rule is actually a natural consequence of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for the novice who wishes to become familiar with the basic principles of Bayesian analysis.

Statistical Data Analysis

Author: Glen Cowan
Publisher: Oxford University Press
ISBN: 9780198501565
Release Date: 1998
Genre: Mathematics

This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are taken from particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques, statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).

Introduction to Bayesian Statistics

Author: Karl-Rudolf Koch
Publisher: Springer Science & Business Media
ISBN: 9783540727262
Release Date: 2007-10-08
Genre: Science

This book presents Bayes’ theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.

Bayesian Data Analysis Third Edition

Author: Andrew Gelman
Publisher: CRC Press
ISBN: 9781439840955
Release Date: 2013-11-01
Genre: Mathematics

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayes Theorem Examples

Author: Scott Hartshorn
Publisher: Lulu Press, Inc
ISBN: 9781329854123
Release Date: 2016-01-24
Genre: Education

Bayes theorem describes the probability of an event based on other information that might be relevant. Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.

Bayesian Analysis with Python

Author: Osvaldo Martin
Publisher: Packt Publishing Ltd
ISBN: 9781785889851
Release Date: 2016-11-25
Genre: Computers

Unleash the power and flexibility of the Bayesian framework About This Book Simplify the Bayes process for solving complex statistical problems using Python; Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; Learn how and when to use Bayesian analysis in your applications with this guide. Who This Book Is For Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed. What You Will Learn Understand the essentials Bayesian concepts from a practical point of view Learn how to build probabilistic models using the Python library PyMC3 Acquire the skills to sanity-check your models and modify them if necessary Add structure to your models and get the advantages of hierarchical models Find out how different models can be used to answer different data analysis questions When in doubt, learn to choose between alternative models. Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression. Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework In Detail The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems. Style and approach Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

Bayesian Ideas and Data Analysis

Author: Ronald Christensen
Publisher: CRC Press
ISBN: 9781439803554
Release Date: 2011-07-07
Genre: Mathematics

Emphasizing the use of WinBUGS and R to analyze real data, Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians presents statistical tools to address scientific questions. It highlights foundational issues in statistics, the importance of making accurate predictions, and the need for scientists and statisticians to collaborate in analyzing data. The WinBUGS code provided offers a convenient platform to model and analyze a wide range of data. The first five chapters of the book contain core material that spans basic Bayesian ideas, calculations, and inference, including modeling one and two sample data from traditional sampling models. The text then covers Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) simulation. After discussing linear structures in regression, it presents binomial regression, normal regression, analysis of variance, and Poisson regression, before extending these methods to handle correlated data. The authors also examine survival analysis and binary diagnostic testing. A complementary chapter on diagnostic testing for continuous outcomes is available on the book’s website. The last chapter on nonparametric inference explores density estimation and flexible regression modeling of mean functions. The appropriate statistical analysis of data involves a collaborative effort between scientists and statisticians. Exemplifying this approach, Bayesian Ideas and Data Analysis focuses on the necessary tools and concepts for modeling and analyzing scientific data. Data sets and codes are provided on a supplemental website.

Bayesian Methods for Hackers

Author: Cameron Davidson-Pilon
Publisher: Addison-Wesley Professional
ISBN: 9780133902921
Release Date: 2015-09-30
Genre: Computers

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Bayesian Statistics

Author: Peter M. Lee
Publisher: John Wiley & Sons
ISBN: 9781118359778
Release Date: 2012-06-25
Genre: Mathematics

Bayesian Statistics is the school of thought that combines priorbeliefs with the likelihood of a hypothesis to arrive at posteriorbeliefs. The first edition of Peter Lee’s book appeared in1989, but the subject has moved ever onwards, with increasingemphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such asvariational methods, Bayesian importance sampling, approximateBayesian computation and Reversible Jump Markov Chain Monte Carlo(RJMCMC), providing a concise account of the way in which theBayesian approach to statistics develops as well as how itcontrasts with the conventional approach. The theory is built upstep by step, and important notions such as sufficiency are broughtout of a discussion of the salient features of specificexamples. This edition: Includes expanded coverage of Gibbs sampling, including morenumerical examples and treatments of OpenBUGS, R2WinBUGS andR2OpenBUGS. Presents significant new material on recent techniques such asBayesian importance sampling, variational Bayes, ApproximateBayesian Computation (ABC) and Reversible Jump Markov Chain MonteCarlo (RJMCMC). Provides extensive examples throughout the book to complementthe theory presented. Accompanied by a supporting website featuring new material andsolutions. More and more students are realizing that they need to learnBayesian statistics to meet their academic and professional goals.This book is best suited for use as a main text in courses onBayesian statistics for third and fourth year undergraduates andpostgraduate students.

Bayesian Essentials with R

Author: Jean-Michel Marin
Publisher: Springer Science & Business Media
ISBN: 9781461486879
Release Date: 2013-10-28
Genre: Computers

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.

Practical Bayesian Inference

Author: Coryn A. L. Bailer-Jones
Publisher: Cambridge University Press
ISBN: 9781108127677
Release Date: 2017-04-27
Genre: Mathematics

Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work.