Data Analysis and Data Mining

Author: Adelchi Azzalini
Publisher: Oxford University Press
ISBN: 9780199942718
Release Date: 2012-04-23
Genre: Business & Economics

An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.

Cluster Analysis and Data Mining

Author: Ronald S. King
Publisher:
ISBN: 1938549384
Release Date: 2014-08-30
Genre: Computers

Applicable to either a course on clustering and classification or as a companion text for a first class in applied statistics.

Intelligent Data Analysis

Author: Michael R. Berthold
Publisher: Springer
ISBN: 9783540486251
Release Date: 2007-06-07
Genre: Computers

This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.

Discovering Knowledge in Data

Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 9781118873571
Release Date: 2014-06-02
Genre: Computers

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet
Publisher: Elsevier
ISBN: 9780124166455
Release Date: 2017-11-09
Genre: Mathematics

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Data Mining and Data Visualization

Author:
Publisher: Elsevier
ISBN: 0080459404
Release Date: 2005-05-02
Genre: Mathematics

Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. Distinguished contributors who are international experts in aspects of data mining Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions Thorough discussion of data visualization issues blending statistical, human factors, and computational insights

Data Analytics

Author: Thomas A. Runkler
Publisher: Springer
ISBN: 9783658140755
Release Date: 2016-07-26
Genre: Computers

This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.

Making Sense of Data

Author: Glenn J. Myatt
Publisher: John Wiley & Sons
ISBN: 9780470101018
Release Date: 2007-02-26
Genre: Mathematics


Applied Data Mining for Business and Industry

Author: Paolo Giudici
Publisher: John Wiley & Sons
ISBN: 9780470058862
Release Date: 2009-05-26
Genre: Computers

This new edition sees the inclusion of 70% new material, including eight new case studies, that brings this best selling title up to date with the many advances made in the field since its original publication. In the text all the methods described are either computational or of a statistical modelling nature; complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of both students and industry professionals.

Real World Data Mining

Author: Dursun Delen
Publisher: FT Press
ISBN: 9780133551112
Release Date: 2014-12-16
Genre: Computers

Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.

Data Mining and Predictive Analytics

Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 9781118116197
Release Date: 2015-03-16
Genre: Computers

Learn methods of data analysis and their application to real-world data sets. Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content

Data Mining Methods for the Content Analyst

Author: Kalev Leetaru
Publisher: Routledge
ISBN: 9781136514586
Release Date: 2012-11-12
Genre: Language Arts & Disciplines

With continuous advancements and an increase in user popularity, data mining technologies serve as an invaluable resource for researchers across a wide range of disciplines in the humanities and social sciences. In this comprehensive guide, author and research scientist Kalev Leetaru introduces the approaches, strategies, and methodologies of current data mining techniques, offering insights for new and experienced users alike. Designed as an instructive reference to computer-based analysis approaches, each chapter of this resource explains a set of core concepts and analytical data mining strategies, along with detailed examples and steps relating to current data mining practices. Every technique is considered with regard to context, theory of operation and methodological concerns, and focuses on the capabilities and strengths relating to these technologies. In addressing critical methodologies and approaches to automated analytical techniques, this work provides an essential overview to a broad innovative field.

Data Mining and Warehousing

Author: S. Prabhu
Publisher: New Age International
ISBN: 9788122419726
Release Date: 2007-01-01
Genre: Data mining

Data Mining is the process of analyzing large amount of data in search of previously undiscovered business patterns. Data Warehousing is a relational/multidimensional database that is designed for Query and Analysis rather than Transaction Processing. This book provides a systematic introduction to the principles of Data Mining and Data Warehousing. It covers the entire range of data mining algorithms (prediction, classification, and association), data mining products and applications, stages.

Statistik Workshop f r Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 9783868993431
Release Date: 2012-05-31
Genre: Computers

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Introduction To Data Mining

Author: Chaitanya P Agrawal, Meena Agrawal
Publisher: Educreation Publishing
ISBN:
Release Date:
Genre: Self-Help

This book is a small endeavor to share the journey of getting introduced to a wonderful topic Data Mining. Personally we came across this during the process of evaluating new tools to be included in the post graduate study curricula of the University we are working in. Soon it became a friendly affair to see the power, potential and ease of empowering the databases with concepts of data mining. It has become powerful in rediscovering the hidden values in data base and soon in data warehouse, equally efficiently. The Data mining is a powerful new technology with great potential focusing on the most important information in their data warehouses. It involves extraction of hidden predictive information from large databases with ease and efficiency. It facilitates to make proactive, knowledge-driven decisions and predict future trends and behaviors. Data mining tools move beyond the analyses of past events provided by retrospective tools typical of decision support systems. The automated, prospective analyses offered by data mining tools can answer finding predictive information easily. This small book is an introduction to the basics of data mining. It also introduces the techniques and technologies behind data mining, the impact of artificial intelligence, artificial neural networks, and fuzzy logic et cetera as the basic building blocks for the same. It concludes with common practical applications, trends and its impact on social and computing environment.