Data Driven Modeling Scientific Computation

Author: J. Nathan Kutz
Publisher: Oxford University Press
ISBN: 9780199660339
Release Date: 2013-08-08
Genre: Computers

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Data Driven Modeling Scientific Computation

Author: J. Nathan Kutz
Publisher: OUP Oxford
ISBN: 9780191635878
Release Date: 2013-08-08
Genre: Language Arts & Disciplines

The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret and give meaning to the data in the context of its scientific setting. A specific aim of this book is to integrate standard scientific computing methods with data analysis. By doing so, it brings together, in a self-consistent fashion, the key ideas from: · statistics, · time-frequency analysis, and · low-dimensional reductions The blend of these ideas provides meaningful insight into the data sets one is faced with in every scientific subject today, including those generated from complex dynamical systems. This is a particularly exciting field and much of the final part of the book is driven by intuitive examples from it, showing how the three areas can be used in combination to give critical insight into the fundamental workings of various problems. Data-Driven Modeling and Scientific Computation is a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation and analysis. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological and physical sciences. An accessible introductory-to-advanced text, this book fully integrates MATLAB and its versatile and high-level programming functionality, while bringing together computational and data skills for both undergraduate and graduate students in scientific computing.

Data Driven Modeling Scientific Computation

Author: J. Nathan Kutz
Publisher: OUP Oxford
ISBN: 9780191635885
Release Date: 2013-08-08
Genre: Language Arts & Disciplines

The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret and give meaning to the data in the context of its scientific setting. A specific aim of this book is to integrate standard scientific computing methods with data analysis. By doing so, it brings together, in a self-consistent fashion, the key ideas from: · statistics, · time-frequency analysis, and · low-dimensional reductions The blend of these ideas provides meaningful insight into the data sets one is faced with in every scientific subject today, including those generated from complex dynamical systems. This is a particularly exciting field and much of the final part of the book is driven by intuitive examples from it, showing how the three areas can be used in combination to give critical insight into the fundamental workings of various problems. Data-Driven Modeling and Scientific Computation is a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation and analysis. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological and physical sciences. An accessible introductory-to-advanced text, this book fully integrates MATLAB and its versatile and high-level programming functionality, while bringing together computational and data skills for both undergraduate and graduate students in scientific computing.

Dynamic Mode Decomposition

Author: J. Nathan Kutz
Publisher: SIAM
ISBN: 9781611974492
Release Date: 2016-11-23
Genre: Science

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Data Driven Computational Methods

Author: John Harlim
Publisher: Cambridge University Press
ISBN: 9781108615136
Release Date: 2018-06-30
Genre: Computers

Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB® codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study.

Big Data in Complex Systems

Author: Aboul-Ella Hassanien
Publisher: Springer
ISBN: 9783319110561
Release Date: 2015-01-02
Genre: Computers

This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.

Big Data Application in Power Systems

Author: Reza Arghandeh
Publisher: Elsevier
ISBN: 9780128119693
Release Date: 2017-11-27
Genre: Science

Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids. Provides expert analysis of the latest developments by global authorities Contains detailed references for further reading and extended research Provides additional cross-disciplinary lessons learned from broad disciplines such as statistics, computer science and bioinformatics Focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data

Data Driven Science and Engineering

Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1108422098
Release Date: 2019-01-31
Genre: Computers

Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art.

Big Data Analytics

Author:
Publisher: Elsevier
ISBN: 9780444634979
Release Date: 2015-08-04
Genre: Mathematics

While the term Big Data is open to varying interpretation, it is quite clear that the Volume, Velocity, and Variety (3Vs) of data have impacted every aspect of computational science and its applications. The volume of data is increasing at a phenomenal rate and a majority of it is unstructured. With big data, the volume is so large that processing it using traditional database and software techniques is difficult, if not impossible. The drivers are the ubiquitous sensors, devices, social networks and the all-pervasive web. Scientists are increasingly looking to derive insights from the massive quantity of data to create new knowledge. In common usage, Big Data has come to refer simply to the use of predictive analytics or other certain advanced methods to extract value from data, without any required magnitude thereon. Challenges include analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy. While there are challenges, there are huge opportunities emerging in the fields of Machine Learning, Data Mining, Statistics, Human-Computer Interfaces and Distributed Systems to address ways to analyze and reason with this data. The edited volume focuses on the challenges and opportunities posed by "Big Data" in a variety of domains and how statistical techniques and innovative algorithms can help glean insights and accelerate discovery. Big data has the potential to help companies improve operations and make faster, more intelligent decisions. Review of big data research challenges from diverse areas of scientific endeavor Rich perspective on a range of data science issues from leading researchers Insight into the mathematical and statistical theory underlying the computational methods used to address big data analytics problems in a variety of domains

Harness Oil and Gas Big Data with Analytics

Author: Keith Holdaway
Publisher: John Wiley & Sons
ISBN: 9781118910894
Release Date: 2014-05-05
Genre: Business & Economics

Use big data analytics to efficiently drive oil and gas exploration and production Harness Oil and Gas Big Data with Analytics provides a complete view of big data and analytics techniques as they are applied to the oil and gas industry. Including a compendium of specific case studies, the book underscores the acute need for optimization in the oil and gas exploration and production stages and shows how data analytics can provide such optimization. This spans exploration, development, production and rejuvenation of oil and gas assets. The book serves as a guide for fully leveraging data, statistical, and quantitative analysis, exploratory and predictive modeling, and fact-based management to drive decision making in oil and gas operations. This comprehensive resource delves into the three major issues that face the oil and gas industry during the exploration and production stages: Data management, including storing massive quantities of data in a manner conducive to analysis and effectively retrieving, backing up, and purging data Quantification of uncertainty, including a look at the statistical and data analytics methods for making predictions and determining the certainty of those predictions Risk assessment, including predictive analysis of the likelihood that known risks are realized and how to properly deal with unknown risks Covering the major issues facing the oil and gas industry in the exploration and production stages, Harness Big Data with Analytics reveals how to model big data to realize efficiencies and business benefits.

Turbulence Coherent Structures Dynamical Systems and Symmetry

Author: Philip Holmes
Publisher: Cambridge University Press
ISBN: 9781107008250
Release Date: 2012-02-23
Genre: Science

Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Individual based Modeling and Ecology

Author: Volker Grimm
Publisher: Princeton University Press
ISBN: 9781400850624
Release Date: 2013-11-28
Genre: Science

Individual-based models are an exciting and widely used new tool for ecology. These computational models allow scientists to explore the mechanisms through which population and ecosystem ecology arises from how individuals interact with each other and their environment. This book provides the first in-depth treatment of individual-based modeling and its use to develop theoretical understanding of how ecological systems work, an approach the authors call "individual-based ecology." Grimm and Railsback start with a general primer on modeling: how to design models that are as simple as possible while still allowing specific problems to be solved, and how to move efficiently through a cycle of pattern-oriented model design, implementation, and analysis. Next, they address the problems of theory and conceptual framework for individual-based ecology: What is "theory"? That is, how do we develop reusable models of how system dynamics arise from characteristics of individuals? What conceptual framework do we use when the classical differential equation framework no longer applies? An extensive review illustrates the ecological problems that have been addressed with individual-based models. The authors then identify how the mechanics of building and using individual-based models differ from those of traditional science, and provide guidance on formulating, programming, and analyzing models. This book will be helpful to ecologists interested in modeling, and to other scientists interested in agent-based modeling.

Mobility Patterns Big Data and Transport Analytics

Author: Constantinos Antoniou
Publisher:
ISBN: 0128129700
Release Date: 2018-09
Genre: Social Science

Mobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility 'structural' analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data's impact on mobility and an introduction to the tools necessary to apply new techniques. The book covers in detail, mobility 'structural' analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data's impact on mobility, and an introduction to the tools necessary to apply new techniques. Guides readers through the paradigm-shifting opportunities and challenges of handling Big Data in transportation modeling and analytics Covers current analytical innovations focused on capturing, predicting, visualizing, and controlling mobility patterns, while discussing future trends Delivers an introduction to transportation-related information advances, providing a benchmark reference by world-leading experts in the field Captures and manages mobility patterns, covering multiple purposes and alternative transport modes, in a multi-disciplinary approach Companion website features videos showing the analyses performed, as well as test codes and data-sets, allowing readers to recreate the presented analyses and apply the highlighted techniques to their own data

Big Data

Author: Rajkumar Buyya
Publisher: Morgan Kaufmann
ISBN: 9780128093467
Release Date: 2016-06-07
Genre: Computers

Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data’s full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. Covers computational platforms supporting Big Data applications Addresses key principles underlying Big Data computing Examines key developments supporting next generation Big Data platforms Explores the challenges in Big Data computing and ways to overcome them Contains expert contributors from both academia and industry

An Introduction to Agent Based Modeling

Author: Uri Wilensky
Publisher: MIT Press
ISBN: 9780262731898
Release Date: 2015-04-10
Genre: Computers

A comprehensive and hands-on introduction to the core concepts, methods, and applications of agent-based modeling, including detailed NetLogo examples.