Data Mining for Business Analytics

Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 9781118729243
Release Date: 2016-04-22
Genre: Mathematics

Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Data Mining for Business Intelligence

Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 9780470084854
Release Date: 2006-12-11
Genre: Mathematics

Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

Data mining

Author: Ian H. Witten
Publisher:
ISBN: 3446215336
Release Date: 2001
Genre:


Office 2016 f r Dummies Alles in einem Band

Author: Peter Weverka
Publisher: John Wiley & Sons
ISBN: 9783527805525
Release Date: 2016-03-11
Genre: Computers

Sie können viel Zeit und Nerven sparen, wenn Sie sich mit Office immer besser auskennen! Grund genug, um sich von Peter Weverka in die Programme und die Funktionen von Office 2016 einführen zu lassen. Sie finden in diesem umfassenden Werk übersichtliche Anleitungen für die täglichen Aufgaben mit Office und vielfältige Tipps und Anregungen, die Ihnen helfen, Ihre Arbeit effektiver zu gestalten. Das Buch ist übersichtlich strukturiert, sodass Sie schnell finden, was Sie brauchen. Lernen Sie neben den Grundlagen auch die weiterführenden Techniken für die wichtigsten Office-Programme kennen: Word, Excel, PowerPoint, OneNote, Outlook, Access und Publisher.

big data work

Author: Thomas H. Davenport
Publisher: Vahlen
ISBN: 9783800648153
Release Date: 2014-10-15
Genre: Fiction

Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.

Getting Started with Business Analytics

Author: David Roi Hardoon
Publisher: CRC Press
ISBN: 9781439896549
Release Date: 2013-03-26
Genre: Business & Economics

Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.

Real Time Data Mining

Author: Florian Stompe
Publisher: Diplomica Verlag
ISBN: 9783836678797
Release Date: 2009-08
Genre: Business & Economics

Data Mining ist ein inzwischen etabliertes, erfolgreiches Werkzeug zur Extraktion von neuem, bislang unbekanntem Wissen aus Daten. In mittlerweile fast allen gr eren Unternehmen wird es genutzt um Mehrwerte f r Kunden zu generieren, den Erfolg von Marketingkampagnen zu erh hen, Betrugsverdacht aufzudecken oder beispielsweise durch Segmentierung unterschiedliche Kundengruppen zu identifizieren. Ein Grundproblem der intelligenten Datenanalyse besteht darin, dass Daten oftmals in rasanter Geschwindigkeit neu entstehen. Eink ufe im Supermarkt, Telefonverbindungen oder der ffentliche Verkehr erzeugen t glich eine neue Flut an Daten, in denen potentiell wertvolles Wissen steckt. Die versteckten Zusammenh nge und Muster k nnen sich im Zeitverlauf mehr oder weniger stark ver ndern. Datenmodellierung findet in der Regel aber noch immer einmalig bzw. sporadisch auf dem Snapshot einer Datenbank statt. Einmal erkannte Muster oder Zusammenh nge werden auch dann noch angenommen, wenn diese l ngst nicht mehr bestehen. Gerade in dynamischen Umgebungen wie zum Beispiel einem Internet-Shop sind Data Mining Modelle daher schnell veraltet. Betrugsversuche k nnen dann unter Umst nden nicht mehr erkannt, Absatzpotentiale nicht mehr genutzt werden oder Produktempfehlungen basieren auf veralteten Warenk rben. Um dauerhaft Wettbewerbsvorteile erzielen zu k nnen, muss das Wissen ber Daten aber m glichst aktuell und von ausgezeichneter Qualit t sein. Der Inhalt dieses Buches skizziert Methoden und Vorgehensweisen von Data Mining in Echtzeit.

Modeling Online Auctions

Author: Wolfgang Jank
Publisher: John Wiley & Sons
ISBN: 1118031865
Release Date: 2010-12-01
Genre: Mathematics

Explore cutting-edge statistical methodologies for collecting, analyzing, and modeling online auction data Online auctions are an increasingly important marketplace, as the new mechanisms and formats underlying these auctions have enabled the capturing and recording of large amounts of bidding data that are used to make important business decisions. As a result, new statistical ideas and innovation are needed to understand bidders, sellers, and prices. Combining methodologies from the fields of statistics, data mining, information systems, and economics, Modeling Online Auctions introduces a new approach to identifying obstacles and asking new questions using online auction data. The authors draw upon their extensive experience to introduce the latest methods for extracting new knowledge from online auction data. Rather than approach the topic from the traditional game-theoretic perspective, the book treats the online auction mechanism as a data generator, outlining methods to collect, explore, model, and forecast data. Topics covered include: Data collection methods for online auctions and related issues that arise in drawing data samples from a Web site Models for bidder and bid arrivals, treating the different approaches for exploring bidder-seller networks Data exploration, such as integration of time series and cross-sectional information; curve clustering; semi-continuous data structures; and data hierarchies The use of functional regression as well as functional differential equation models, spatial models, and stochastic models for capturing relationships in auction data Specialized methods and models for forecasting auction prices and their applications in automated bidding decision rule systems Throughout the book, R and MATLAB software are used for illustrating the discussed techniques. In addition, a related Web site features many of the book's datasets and R and MATLAB code that allow readers to replicate the analyses and learn new methods to apply to their own research. Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes. Visit this book's companion website by clicking here

Lean UX

Author: Jeff Gothelf
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 9783958451612
Release Date: 2015-08-26
Genre:

- Lean UX effektiv im Unternehmen implementieren - Vorhandene Strukturen anpassen und interdisziplinäre Teams bilden - Mit Lean UX schlanke und schnell lieferbare Produktversionen erstellen Der Lean-UX-Ansatz für das Interaction Design ist wie geschaffen für die webdominierte Realität von heute. Jeff Gothelf, Pionier und führender Experte für Lean UX, erläutert in diesem Buch die zentralen Prinzipien, Taktiken und Techniken dieser Entwicklungsmethode von Grund auf – das Experimentieren mit Designideen in schneller Abfolge, die Validierung mithilfe echter Nutzer und die kontinuierliche Anpassung Ihres Designs anhand der neu hinzugewonnenen Erkenntnisse. In Anlehnung an die Theorien des Lean Developments und anderer agiler Entwicklungsmethoden gestattet Ihnen Lean UX, sich auf das Designen der eigentlichen User Experience statt auf die Deliverables zu konzentrieren. Dieses Buch zeigt Ihnen, wie Sie eng mit anderen Mitgliedern des Produktteams zusammenarbeiten sowie frühzeitige und häufige Nutzerfeedbacks realisieren können. Außerdem erfahren Sie, wie sich der Designprozess in kurzen, iterativen Zyklen vorantreiben lässt, um herauszufinden, was sowohl in geschäftlicher Hinsicht als auch aus Sicht der Nutzer am besten funktioniert. Lean UX weist Ihnen den Weg, wie Sie dieses Umdenken in Ihrem Unternehmen herbeiführen können – eine Wendung zum Besseren. - Visualisieren Sie das Problem, das Sie zu lösen versuchen, und fokussieren Sie Ihr Team auf die »richtigen« Ergebnisse - Vermitteln Sie dem gesamten Produktteam das Designer Toolkit - Lassen Sie Ihr Team sehr viel früher als üblich an Ihren Erkenntnissen teilhaben - Erstellen Sie MVPs (Minimum Viable Products), um in Erfahrung zu bringen, welche Ideen und Konzepte funktionieren - Beziehen Sie die »Stimme des Kunden« in den gesamten Projektzyklus mit ein - Kombinieren Sie Lean UX mit dem agilen Scrum-Framework und steigern Sie so die Produktivität Ihres Teams - Setzen Sie sich mit den organisatorischen Veränderungen auseinander, die zur Anwendung und Integration der Lean-UX-Methode erforderlich sind

Introductory Statistics and Analytics

Author: Peter C. Bruce
Publisher: John Wiley & Sons
ISBN: 9781118881330
Release Date: 2015-01-08
Genre: Mathematics

Concise, thoroughly class-tested primer that features basicstatistical concepts in the concepts in the context of analytics,resampling, and the bootstrap A uniquely developed presentation of key statistical topics,Introductory Statistics and Analytics: A ResamplingPerspective provides an accessible approach to statisticalanalytics, resampling, and the bootstrap for readers with variouslevels of exposure to basic probability and statistics. Originallyclass-tested at one of the first online learning companies in thediscipline, www.statistics.com, the book primarily focuses onapplications of statistical concepts developed via resampling, witha background discussion of mathematical theory. This featurestresses statistical literacy and understanding, which demonstratesthe fundamental basis for statistical inference and demystifiestraditional formulas. The book begins with illustrations that have the essentialstatistical topics interwoven throughout before moving on todemonstrate the proper design of studies. Meeting all of theGuidelines for Assessment and Instruction in Statistics Education(GAISE) requirements for an introductory statistics course,Introductory Statistics and Analytics: A ResamplingPerspective also includes: Over 300 “Try It Yourself” exercises andintermittent practice questions, which challenge readers atmultiple levels to investigate and explore key statisticalconcepts Numerous interactive links designed to provide solutions toexercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing fieldof data science Multiple discussions of various software systems, such asMicrosoft Office Excel®, StatCrunch, and R, to develop andanalyze data Areas of concern and/or contrasting points-of-view indicatedthrough the use of “Caution” icons Introductory Statistics and Analytics: A ResamplingPerspective is an excellent primary textbook for courses inpreliminary statistics as well as a supplement for courses inupper-level statistics and related fields, such as biostatisticsand econometrics. The book is also a general reference for readersinterested in revisiting the value of statistics.

Statistical Methods in e Commerce Research

Author: Wolfgang Jank
Publisher: John Wiley & Sons
ISBN: 0470323183
Release Date: 2008-12-29
Genre: Mathematics

This groundbreaking book introduces the application of statistical methodologies to e-Commerce data With the expanding presence of technology in today's economic market, the use of the Internet for buying, selling, and investing is growing more popular and public in nature. Statistical Methods in e-Commerce Research is the first book of its kind to focus on the statistical models and methods that are essential in order to analyze information from electronic-commerce (e-Commerce) transactions, identify the challenges that arise with new e-Commerce data structures, and discover new knowledge about consumer activity. This collection gathers over thirty researchers and practitioners from the fields of statistics, computer science, information systems, and marketing to discuss the growing use of statistical methods in e-Commerce research. From privacy protection to economic impact, the book first identifies the many obstacles that are encountered while collecting, cleaning, exploring, and analyzing e-Commerce data. Solutions to these problems are then suggested using established and newly developed statistical and data mining methods. Finally, a look into the future of this evolving area of study is provided through an in-depth discussion of the emerging methods for conducting e-Commerce research. Statistical Methods in e-Commerce Research successfully bridges the gap between statistics and e-Commerce, introducing a statistical approach to solving challenges that arise in the context of online transactions, while also introducing a wide range of e-Commerce applications and problems where novel statistical methodology is warranted. It is an ideal text for courses on e-Commerce at the upper-undergraduate and graduate levels and also serves as a valuable reference for researchers and analysts across a wide array of subject areas, including economics, marketing, and information systems who would like to gain a deeper understanding of the use of statistics in their work.