Data Mining

Author: Ian H. Witten
Publisher: Morgan Kaufmann
ISBN: 9780128043578
Release Date: 2016-10-01
Genre: Computers

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book

Data Mining Practical Machine Learning Tools and Techniques

Author: Ian H. Witten
Publisher: Elsevier
ISBN: 9780080890364
Release Date: 2011-02-03
Genre: Computers

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Data Mining

Author: Ian H. Witten
Publisher: Elsevier
ISBN: 008047702X
Release Date: 2005-07-13
Genre: Computers

Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods Performance improvement techniques that work by transforming the input or output

Data Mining Concepts and Techniques

Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Release Date: 2011-06-09
Genre: Computers

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Exploratory Data Mining and Data Cleaning

Author: Tamraparni Dasu
Publisher: John Wiley & Sons
ISBN: 9780471458647
Release Date: 2003-08-01
Genre: Mathematics

Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.

Data Preparation for Data Mining

Author: Dorian Pyle
Publisher: Morgan Kaufmann
ISBN: 1558605290
Release Date: 1999
Genre: Computers

A guide to the importance of well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance, and provides examples of how to apply a variety of techniques in order to solve real world business problems.

Instant Weka How to

Author: Boštjan Kaluža
Publisher: Packt Publishing Ltd
ISBN: 9781782163879
Release Date: 2013-01-01
Genre: Computers

Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A practical guide with examples and applications of programming Weka in Java.This book primarily targets Java developers who want to build Weka's data mining capabilities into their projects. Computer science students, data scientists, artificial intelligence programmers, and statistical programmers would equally gain from this book and would learn about essential tasks required to implement a project. Experience with Weka concepts is assumed.

Data Virtualization for Business Intelligence Systems

Author: Rick F. van der Lans
Publisher: Elsevier
ISBN: 9780123944252
Release Date: 2012
Genre: Computers

Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.

Data Mining Techniques

Author: Gordon S. Linoff
Publisher: John Wiley & Sons
ISBN: 1118087453
Release Date: 2011-03-23
Genre: Computers

The leading introductory book on data mining, fully updated and revised! When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company. Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more Provides best practices for performing data mining using simple tools such as Excel Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.

Data Mining

Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 9783319141428
Release Date: 2015-04-13
Genre: Computers

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

Data Mining and Predictive Analytics

Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 9781118868676
Release Date: 2015-02-19
Genre: Computers

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Decision Making in Health Care

Author: Gretchen B. Chapman
Publisher: Cambridge University Press
ISBN: 0521541247
Release Date: 2003-09
Genre: Medical

Decision making is a crucial element in the field of medicine. The physician has to determine what is wrong with the patient and recommend treatment, while the patient has to decide whether or not to seek medical care, and go along with the treatment recommended by the physician. Health policy makers and health insurers have to decide what to promote, what to discourage, and what to pay for. Together, these decisions determine the quality of health care that is provided. Decision Making in Health Care, first published in 2000, is a comprehensive overview of the field of medical decision making - a rapidly expanding field that includes quantitative theoretical tools for modeling decisions, psychological research on how decisions are actually made, and applied research on how physician and patient decision making can be improved.

Game Analytics

Author: Magy Seif El-Nasr
Publisher: Springer
ISBN: 1447172248
Release Date: 2016-08-23
Genre: Computers

Developing a successful game in today’s market is a challenging endeavor. Thousands of titles are published yearly, all competing for players’ time and attention. Game analytics has emerged in the past few years as one of the main resources for ensuring game quality, maximizing success, understanding player behavior and enhancing the quality of the player experience. It has led to a paradigm shift in the development and design strategies of digital games, bringing data-driven intelligence practices into the fray for informing decision making at operational, tactical and strategic levels. Game Analytics - Maximizing the Value of Player Data is the first book on the topic of game analytics; the process of discovering and communicating patterns in data towards evaluating and driving action, improving performance and solving problems in game development and game research. Written by over 50 international experts from industry and research, it covers a comprehensive range of topics across more than 30 chapters, providing an in-depth discussion of game analytics and its practical applications. Topics covered include monetization strategies, design of telemetry systems, analytics for iterative production, game data mining and big data in game development, spatial analytics, visualization and reporting of analysis, player behavior analysis, quantitative user testing and game user research. This state-of-the-art volume is an essential source of reference for game developers and researchers. Key takeaways include: Thorough introduction to game analytics; covering analytics applied to data on players, processes and performance throughout the game lifecycle. In-depth coverage and advice on setting up analytics systems and developing good practices for integrating analytics in game-development and -management. Contributions by leading researchers and experienced professionals from the industry, including Ubisoft, Sony, EA, Bioware, Square Enix, THQ, Volition, and PlayableGames. Interviews with experienced industry professionals on how they use analytics to create hit games.

Commercial Data Mining

Author: David Nettleton
Publisher: Elsevier
ISBN: 9780124166585
Release Date: 2014-01-29
Genre: Computers

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. Illustrates cost-benefit evaluation of potential projects Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools Approachable reference can be read from cover to cover by readers of all experience levels Includes practical examples and case studies as well as actionable business insights from author's own experience

Managing Gigabytes

Author: Ian H. Witten
Publisher: Morgan Kaufmann
ISBN: 1558605703
Release Date: 1999
Genre: Business & Economics

In this fully updated second edition of the highly acclaimed Managing Gigabytes, authors Witten, Moffat, and Bell continue to provide unparalleled coverage of state-of-the-art techniques for compressing and indexing data. Whatever your field, if you work with large quantities of information, this book is essential reading--an authoritative theoretical resource and a practical guide to meeting the toughest storage and access challenges. It covers the latest developments in compression and indexing and their application on the Web and in digital libraries. It also details dozens of powerful techniques supported by mg, the authors' own system for compressing, storing, and retrieving text, images, and textual images. mg's source code is freely available on the Web. * Up-to-date coverage of new text compression algorithms such as block sorting, approximate arithmetic coding, and fat Huffman coding * New sections on content-based index compression and distributed querying, with 2 new data structures for fast indexing * New coverage of image coding, including descriptions of de facto standards in use on the Web (GIF and PNG), information on CALIC, the new proposed JPEG Lossless standard, and JBIG2 * New information on the Internet and WWW, digital libraries, web search engines, and agent-based retrieval * Accompanied by a public domain system called MG which is a fully worked-out operational example of the advanced techniques developed and explained in the book * New appendix on an existing digital library system that uses the MG software