Data Mining with R

Author: Luis Torgo
Publisher: CRC Press
ISBN: 9781315399096
Release Date: 2016-11-30
Genre: Business & Economics

Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Privacy Aware Knowledge Discovery

Author: Francesco Bonchi
Publisher: CRC Press
ISBN: 9781439803660
Release Date: 2010-12-02
Genre: Computers

Covering research at the frontier of this field, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques presents state-of-the-art privacy-preserving data mining techniques for application domains, such as medicine and social networks, that face the increasing heterogeneity and complexity of new forms of data. Renowned authorities from prominent organizations not only cover well-established results—they also explore complex domains where privacy issues are generally clear and well defined, but the solutions are still preliminary and in continuous development. Divided into seven parts, the book provides in-depth coverage of the most novel reference scenarios for privacy-preserving techniques. The first part gives general techniques that can be applied to various applications discussed in the rest of the book. The second section focuses on the sanitization of network traces and privacy in data stream mining. After the third part on privacy in spatio-temporal data mining and mobility data analysis, the book examines time series analysis in the fourth section, explaining how a perturbation method and a segment-based method can tackle privacy issues of time series data. The fifth section on biomedical data addresses genomic data as well as the problem of privacy-aware information sharing of health data. In the sixth section on web applications, the book deals with query log mining and web recommender systems. The final part on social networks analyzes privacy issues related to the management of social network data under different perspectives. While several new results have recently occurred in the privacy, database, and data mining research communities, a uniform presentation of up-to-date techniques and applications is lacking. Filling this void, Privacy-Aware Knowledge Discovery presents novel algorithms, patterns, and models, along with a significant collection of open problems for future investigation.

Feature Engineering for Machine Learning and Data Analytics

Author: Guozhu Dong
Publisher: CRC Press
ISBN: 9781351721271
Release Date: 2018-03-14
Genre: Business & Economics

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Advances in Machine Learning and Data Mining for Astronomy

Author: Michael J. Way
Publisher: CRC Press
ISBN: 9781439841730
Release Date: 2012-03-29
Genre: Computers

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 9783897216501
Release Date: 2010-12-31
Genre: Computers

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

The Essentials of Data Science Knowledge Discovery Using R

Author: Graham J. Williams
Publisher: CRC Press
ISBN: 9781351647496
Release Date: 2017-07-28
Genre: Business & Economics

The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book.

RapidMiner

Author: Markus Hofmann
Publisher: CRC Press
ISBN: 9781482205503
Release Date: 2016-04-19
Genre: Business & Economics

Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

R f r Dummies

Author: Andrie de Vries
Publisher: John Wiley & Sons
ISBN: 9783527812523
Release Date: 2017-11-07
Genre: Computers


Kompendium Systembiologie

Author: Andreas Kremling
Publisher: Springer-Verlag
ISBN: 9783834886071
Release Date: 2011-10-25
Genre: Science

Das Buch beschreibt die Grundlagen der mathematischen Modellierung zellulärer Systeme. Nach einer Klassifikation von Modellen wird schwerpunktmäßig auf deterministische Modelle eingegangen und für alle relevanten zellulären Prozesse entsprechende Gleichungen angegeben. Anschließend werden eine Reihe von Verfahren zur Modellanalyse vorgestellt. Etwas kürzer werden Verfahren zum Reverse Engineering und zur Analyse von Netzwerkgraphen abgehandelt. Am Ende werden noch Verfahren der Parameteridentifikation besprochen.

Data Mining

Author: Helge Petersohn
Publisher: Oldenbourg Verlag
ISBN: 3486577158
Release Date: 2005
Genre:

In vielen, insbesondere in grosseren Unternehmen entstehen in kurzen Zeitraumen Terabyte von Daten. Diese umfangreichen Datenbestande beinhalten wertvolle Informationen fur Entscheider und erfordern die Anwendung von anspruchsvollen mathematisch-statistischen Verfahren zur Datenanalyse. In diesem Buch wird eine Anwendungsarchitektur fur Data Mining entwickelt. Ein wesentlicher Beitrag besteht in der systematischen Aufarbeitung von Data Mining-Verfahren und deren anwendungsbezogene Einordnung in die Data Mining-Anwendungsarchitektur (DMA)."

JASA

Author:
Publisher:
ISBN: UOM:49015003119501
Release Date: 2006
Genre: Statistics


Real Time Data Mining

Author: Florian Stompe
Publisher: Diplomica Verlag
ISBN: 9783836678797
Release Date: 2009-08
Genre: Business & Economics

Data Mining ist ein inzwischen etabliertes, erfolgreiches Werkzeug zur Extraktion von neuem, bislang unbekanntem Wissen aus Daten. In mittlerweile fast allen gr eren Unternehmen wird es genutzt um Mehrwerte f r Kunden zu generieren, den Erfolg von Marketingkampagnen zu erh hen, Betrugsverdacht aufzudecken oder beispielsweise durch Segmentierung unterschiedliche Kundengruppen zu identifizieren. Ein Grundproblem der intelligenten Datenanalyse besteht darin, dass Daten oftmals in rasanter Geschwindigkeit neu entstehen. Eink ufe im Supermarkt, Telefonverbindungen oder der ffentliche Verkehr erzeugen t glich eine neue Flut an Daten, in denen potentiell wertvolles Wissen steckt. Die versteckten Zusammenh nge und Muster k nnen sich im Zeitverlauf mehr oder weniger stark ver ndern. Datenmodellierung findet in der Regel aber noch immer einmalig bzw. sporadisch auf dem Snapshot einer Datenbank statt. Einmal erkannte Muster oder Zusammenh nge werden auch dann noch angenommen, wenn diese l ngst nicht mehr bestehen. Gerade in dynamischen Umgebungen wie zum Beispiel einem Internet-Shop sind Data Mining Modelle daher schnell veraltet. Betrugsversuche k nnen dann unter Umst nden nicht mehr erkannt, Absatzpotentiale nicht mehr genutzt werden oder Produktempfehlungen basieren auf veralteten Warenk rben. Um dauerhaft Wettbewerbsvorteile erzielen zu k nnen, muss das Wissen ber Daten aber m glichst aktuell und von ausgezeichneter Qualit t sein. Der Inhalt dieses Buches skizziert Methoden und Vorgehensweisen von Data Mining in Echtzeit.

big data work

Author: Thomas H. Davenport
Publisher: Vahlen
ISBN: 9783800648153
Release Date: 2014-10-15
Genre: Fiction

Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.

Datenanalyse mit Python

Author: Wes McKinney
Publisher: O'Reilly
ISBN: 9783960102144
Release Date: 2018-10-29
Genre: Computers

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.