Data Modeling Made Simple with CA ERwin Data Modeler r8

Author: Donna Burbank
Publisher: Technics Publications
ISBN: 9781634620697
Release Date: 2011-08-01
Genre: Computers

Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.

Data Modeling Made Simple with CA ERwin Data Modeler R8

Author: Donna Burbank
Publisher: Technics Publications
ISBN: 9781935504092
Release Date: 2011-08-01
Genre: Computers

Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You'll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin's Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both 'top down' and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example.Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as 'real world' scenarios for context.Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries.Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin's Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8.As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.

Data Modeling Made Simple

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620161
Release Date: 2015-12-29
Genre: Computers

Data Modeling Made Simple will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices. This book is written in a conversational style that encourages you to read it from start to finish and master these ten objectives: Know when a data model is needed and which type of data model is most effective for each situation Read a data model of any size and complexity with the same confidence as reading a book Build a fully normalized relational data model, as well as an easily navigatable dimensional model Apply techniques to turn a logical data model into an efficient physical design Leverage several templates to make requirements gathering more efficient and accurate Explain all ten categories of the Data Model Scorecard Learn strategies to improve your working relationships with others Appreciate the impact unstructured data has, and will have, on our data modeling deliverables Learn basic UML concepts Put data modeling in context with XML, metadata, and agile development Book Review by Johnny Gay In this book review, I address each section in the book and provide what I found most valuable as a data modeler. I compare, as I go, how the book's structure eases the new data modeler into the subject much like an instructor might ease a beginning swimmer into the pool. This book begins like a Dan Brown novel. It even starts out with the protagonist, our favorite data modeler, lost on a dark road somewhere in France. In this case, what saves him isn't a cipher, but of all things, something that's very much like a data model in the form of a map! The author deems they are both way-finding tools. The chapters in the book are divided into 5 sections. The chapters in each section end with an exercise and a list of the key points covered to reinforce what you've learned. I find myself comparing the teaching structure of the book to the way most of us learn to swim.

Data Modeling for the Business

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620437
Release Date: 2009-04-01
Genre: Computers

Did you ever try getting Businesspeople and IT to agree on the project scope for a new application? Or try getting Marketing and Sales to agree on the target audience? Or try bringing new team members up to speed on the hundreds of tables in your data warehouse — without them dozing off? Whether you are a businessperson or an IT professional, you can be the hero in each of these and hundreds of other scenarios by building a High-Level Data Model. The High-Level Data Model is a simplified view of our complex environment. It can be a powerful communication tool of the key concepts within our application development projects, business intelligence and master data management programs, and all enterprise and industry initiatives. Learn about the High-Level Data Model and master the techniques for building one, including a comprehensive ten-step approach and hands-on exercises to help you practice topics on your own. In this book, we review data modeling basics and explain why the core concepts stored in a high-level data model can have significant business impact on an organization. We explain the technical notation used for a data model and walk through some simple examples of building a high-level data model. We also describe how data models relate to other key initiatives you may have heard of or may be implementing in your organization. This book contains best practices for implementing a high-level data model, along with some easy-to-use templates and guidelines for a step-by-step approach. Each step will be illustrated using many examples based on actual projects we have worked on. Names have been changed to protect the innocent, but the pain points and lessons have been preserved. One example spans an entire chapter and will allow you to practice building a high-level data model from beginning to end, and then compare your results to ours. Building a high-level data model following the ten step approach you’ll read about is a great way to ensure you will retain the new skills you learn in this book. As is the case in many disciplines, using the right tool for the right job is critical to the overall success of your high-level data model implementation. To help you in your tool selection process, there are several chapters dedicated to discussing what to look for in a high-level data modeling tool and a framework for choosing a data modeling tool, in general. This book concludes with a real-world case study that shows how an international energy company successfully used a high-level data model to streamline their information management practices and increase communication throughout the organization—between both businesspeople and IT. Data modeling is one of the under-exploited, and potentially very valuable, business capabilities that are often hidden away in an organization’s Information Technology department. Data Modeling for the Business highlights both the resulting damage to business value, and the opportunities to make things better. As an easy-to follow and comprehensive guide on the ‘why’ and ‘how’ of data modeling, it also reminds us that a successful strategy for exploiting IT depends at least as much on the information as the technology. Chris Potts, Corporate IT Strategist and Author of fruITion: Creating the Ultimate Corporate Strategy for Information Technology One of the most critical systems issues is aligning business with IT and fulfilling business needs using data models. The authors of Data Modeling for the Business do a masterful job at simply and clearly describing the art of using data models to communicate with business representatives and meet business needs. The book provides many valuable tools, analogies, and step-by-step methods for effective data modeling and is an important contribution in bridging the much needed connection between data modeling and realizing business requirements. Len Silverston, author of The Data Model Resource Book series

Data Modeling with ERwin

Author: M. Carla DeAngelis
Publisher: Sams Publishing
ISBN: 0672318687
Release Date: 2000
Genre: Computers

From the first chapter, author Carla DeAngelis skillfully explains the normally complex concepts of Data Modeling-a critical success factor in the information-based enterprises of today. Carla tackles complex topics such as Logical Data Models, Modeling Methodologies, Relationships, and Attributes in a clear style that makes it simple for anyone to begin applying them immediately. Once the foundation has been laid, Carla teaches you to develop your own databases with ERwin. You will learn to use the tool to create primary keys and assign attributes, build data relationships with point and click ease, build and edit tables with Erwin's built-in editors, create indexes with the Index Editor, write custom SQL scripts, and process reports with the Report Tools.

The Nimble Elephant

Author: John Giles
Publisher: Technics Publications
ISBN: 9781634620253
Release Date: 2012-08-01
Genre: Computers

“Get it done well and get it done fast” are twin, apparently opposing, demands. Data architects are increasingly expected to deliver quality data models in challenging timeframes, and agile developers are increasingly expected to ensure that their solutions can be easily integrated with the data assets of the overall organization. If you need to deliver quality solutions despite exacting schedules, “The Nimble Elephant” will help by describing proven techniques that leverage the libraries of published data model patterns to rapidly assemble extensible and robust designs. The three sections in the book provide guidelines for applying the lessons to your own situation, so that you can apply the techniques and patterns immediately to your current assignments. The first section, Foundations for Data Agility, addresses some perceived aspects of friction between “data” and “agile” practitioners. As a starting point for resolving the differences, pattern levels of granularity are classified, and their interdependencies exposed. A context of various types of models is established (e.g. conceptual / logical / physical, and industry / enterprise / project), and you will learn how to customize patterns within specific model types. The second section, Steps Towards Data Agility, shares guidelines on generalizing and specializing, with cautions on the dangers of going too far. Creativity in using patterns beyond their intended purpose is encouraged. The short-term “You Ain’t Gonna Need It” (YAGNI) philosophy of agile practitioners, and the longer-term strategic perspectives of architects, are compared and evaluated. Consideration is given to the potential of enterprise views contributing to project-specific models. Other topics include industry models, iterative modeling, creation of patterns when none exist, and patterns for rules-in-data. The section ends with a perspective on the modeler’s possible role in agile projects, followed by a case study. The final section, A Bridge to the Land of Object Orientation, provides a pathway for re-skilling traditional data modelers who want to expand their options by actively engaging with the ranks of object-oriented developers. I’m delighted to see that John has put his extensive experience and broad knowledge of data modeling into print! John’s ability to simplify the complex, and to share his knowledge and enthusiasm – and humor – with colleagues, comes through in this very useful and readable book. I recommend it to anyone working with data. — Monika Remenyi, Senior Data Architect, Telstra John Giles has written a compelling and engaging book about the importance of data modeling patterns in the world of agile computing. His book is clearly and simply written, and it is full of excellent examples drawn from his extensive experience as a practitioner. You will see the enthusiasm and passion that John clearly has for his work in data modeling. And you will see in his book that any interchange with John will always have its fair share of good humor and wisdom! — Professor Ron Weber, Dean, Faculty of IT, Monash University

Solitude

Author: Michael Harris
Publisher: Macmillan
ISBN: 9781250088611
Release Date: 2017-04-04
Genre: Psychology

With a foreword by Nicholas Carr, author of the Pulitzer Prize–finalist The Shallows. Today, society embraces sharing like never before. Fueled by our dependence on mobile devices and social media, we have created an ecosystem of obsessive connection. Many of us now lead lives of strangely crowded isolation: we are always linked, but only shallowly so. The capacity to be alone, properly alone, is one of life’s subtlest skills. Real solitude is a powerful resource we can call upon—a crucial ingredient for a rich interior life. It inspires reflection, allows creativity to flourish, and improves our relationships with ourselves and, unexpectedly, with others. Idle hands can, in fact, produce the extraordinary. In living bigger and faster, we have forgotten the joys of silence, and undervalued how profoundly it can revolutionize our lives. This book is about discovering stillness inside the city, inside the crowd, inside our busy lives. With wit and energy, award-winning author Michael Harris weaves captivating true stories with reporting from the world’s foremost brain researchers, psychologists, and tech entrepreneurs to guide us toward a state of measured connectivity that balances quiet and companionship. Solitude is a beautiful and convincing statement on the transformative power of being alone.

Data Lake Architecture

Author: Bill Inmon
Publisher: Technics Publications
ISBN: 9781634621199
Release Date: 2016-04-01
Genre: Computers

Organizations invest incredible amounts of time and money obtaining and then storing big data in data stores called data lakes. But how many of these organizations can actually get the data back out in a useable form? Very few can turn the data lake into an information gold mine. Most wind up with garbage dumps. Data Lake Architecture will explain how to build a useful data lake, where data scientists and data analysts can solve business challenges and identify new business opportunities. Learn how to structure data lakes as well as analog, application, and text-based data ponds to provide maximum business value. Understand the role of the raw data pond and when to use an archival data pond. Leverage the four key ingredients for data lake success: metadata, integration mapping, context, and metaprocess. Bill Inmon opened our eyes to the architecture and benefits of a data warehouse, and now he takes us to the next level of data lake architecture.

A Modern Introduction to Probability and Statistics

Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 9781846281686
Release Date: 2006-03-30
Genre: Mathematics

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

UML Database Modeling Workbook

Author: Michael Blaha
Publisher: Technics Publications
ISBN: 9781634620727
Release Date: 2013-10-01
Genre: Computers

With our appetites for data on the rise, it has become more important than ever to use UML (Unified Modeling Language) to capture and precisely represent all of these data requirements. Learn how to construct UML data models by working through a series of exercises and self-assessment tests. Beginners can learn the UML directly. Experienced modelers can leverage their understanding of existing database notations, as the book extensively compares the UML to traditional data modeling (Information Engineering). 1. Discover a new way of representing data requirements and communicating better with your business customers. 2. Understand what UML constructs mean and how to properly use them. 3. Learn subtleties of the UML. Become a power UML developer. 4. Practice constructing data models with the exercises. The back of the book answers every exercise. 5. Assess your mastery of the material. Each part has a multiple-choice test that can quantify your understanding. 6. Improve your ability to abstract – think about different ways of representation – as you construct data models. 7. Measure the quality of your data models. 8. Be able to create database designs (DDL code) starting from a UML data model. 9. Be able to write SQL database queries using a data model as a blueprint. 10. Know the differences among operational models, data warehouse models, enterprise models, and master models. They are all aspects of data modeling. This book is concise and to the point. You will learn by induction through reading, practice, and feedback.

Modern Database Management Global Edition

Author: Jeff Hoffer
Publisher: Pearson Higher Ed
ISBN: 9781292101866
Release Date: 2016-02-23
Genre: Computers

For introductory courses in Database Management. Provide the latest information in database development Focusing on what leading database practitioners say are the most important aspects to database development, Modern Database Management presents sound pedagogy, and topics that are critical for the practical success of database professionals. The Twelfth Edition further facilitates learning with illustrations that clarify important concepts and new media resources that make some of the more challenging material more engaging. Also included are general updates and expanded material in the areas undergoing rapid change due to improved managerial practices, database design tools and methodologies, and database technology.

Data Model Scorecard

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620840
Release Date: 2015-11-01
Genre: Computers

Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).

Process Development

Author: G. Herbert Vogel
Publisher: John Wiley & Sons
ISBN: 9783527604715
Release Date: 2006-03-06
Genre: Technology & Engineering

Guiding readers through all steps of the complex process, this book covers the most diverse aspects of chemicals production, including those not or insufficiently covered in natural science courses. These comprise economic feasibility, patenting and licensing, demands on the location and the problem of waste disposal. Throughout, the author does not rely on simple references to other literature but instead reiterates many facts and places them in context, as well as succinctly explaining formulas, thus removing the need to look up items in secondary reference works. As such, the book is suitable for both newcomers as well as those already working in the field. Those working in R&D as well as plant managers will learn how to avoid pitfalls, resulting in higher safety. A common basis and indispensable ready reference for engineers and chemists.

Data Modeling Made Simple with PowerDesigner

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620703
Release Date: 2011-04-01
Genre: Computers

Data Modeling Made Simple with PowerDesigner will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with PowerDesigner. You'll build many PowerDesigner data models along the way, increasing your skills first with the fundamentals and later with more advanced feature of PowerDesigner. This book combines real-world experience and best practices to help you master the following ten objectives: This book has ten key objectives for you, the reader: 1. You will know when a data model is needed and which PowerDesigner models are the most appropriate for each situation 2. You will be able to read a data model of any size and complexity with the same confidence as reading a book 3. You will know when to apply and how to make use of all the key features of PowerDesigner 4. You will be able to build, step-by-step in PowerDesigner, a pyramid of linked data models, including a conceptual data model, a fully normalized relational data model, a physical data model, and an easily navigable dimensional model 5. You will be able to apply techniques such as indexing, transforms, and forward engineering to turn a logical data model into an efficient physical design 6. You will improve data governance and modeling consistency within your organization by leveraging features such as PowerDesigner’s reference models, Glossary, domains, and model comparison and model mapping techniques 7. You will know how to utilize dependencies and traceability links to assess the impact of change 8. You will know how to integrate your PowerDesigner models with externally-managed files, including the import and export of data using Excel and Requirements documents 9. You will know where you can take advantage of the entire PowerDesigner model set, to increase the success rate of corporate-wide initiatives such as business intelligence and enterprise resource planning (ERP) 10. You will understand the key differentiators between PowerDesigner and other data modeling tools you may have used before This book contains seven sections: Section I introduces data modeling, along with its purpose and variations. Section II explains all of the components on a data model including entities, data elements, relationships, and keys. Also included is a discussion of the importance of quality names and definitions for your objects. Section III explains the important role of data modeling tools, the key features required of any data modeling tool, and an introduction to the essential features of PowerDesigner. It also describes how to create and manage data modeling objects in PowerDesigner. Section IV introduces the Data Model Pyramid, then dives into the relational and dimensional subject areas, logical, and physical data models, and describes how PowerDesigner supports these models and the connections between them. Section V guides you through the creation of your own Data Model Pyramid. Section VI focuses on additional PowerDesigner features (some of which have already been introduced) that make life easier for data modelers. Learn how to get information into and out of PowerDesigner, and improve the quality of your data models with a cross-reference of key PowerDesigner features with the Data Model Scorecard®. Section VII discusses PowerDesigner topics beyond data modeling, including the XML physical model and the other types of model available in PowerDesigner.

Advances in Fluid Mechanics IX

Author: Matiur Rahman
Publisher: WIT Press
ISBN: 9781845646004
Release Date: 2012
Genre: Science

This book discusses the basic formulations of fluid mechanics and their computer modelling, as well as the relationship between experimental and analytical results. Containing papers from the Ninth International Conference on Advances in Fluid Mechanics, this book discusses the basic formulations of fluid mechanics and their computer modelling, as well as the relationship between experimental and analytical results. Scientists, engineers, and other professionals interested in the latest developments in theoretical and computational fluid mechanics will find the book a useful addition to the literature. The book covers a wide range of topics, with emphasis on new applications and research currently in progress, including: Computational Methods in Fluid Mechanics, Environmental Fluid Mechanics; Experimental Versus Simulation Methods; Multiphase Flow; Hydraulics and Hydrodynamics; Heat and Mass Transfer; Industrial Applications; Wave Studies; Biofluids; Fluid Structure Interaction.