Deep Learning Neural Networks

Author: Daniel Graupe
Publisher: World Scientific Publishing Company
ISBN: 9789813146471
Release Date: 2016-07-07
Genre: Computers

Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance. This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.

Neural Networks and Deep Learning

Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 9783319944630
Release Date: 2018-08-25
Genre: Computers

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Principles of Artificial Neural Networks Basic Designs to Deep Learning 4th Edition

Author: Daniel Graupe
Publisher:
ISBN: 9811201226
Release Date: 2019-06-27
Genre:

The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks -- demonstrating how such case studies are designed, executed and how their results are obtained.The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Neural Networks with R

Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 9781788399418
Release Date: 2017-09-27
Genre: Computers

Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Neuronale Netze selbst programmieren

Author: Tariq Rashid
Publisher: O'Reilly
ISBN: 9783960101031
Release Date: 2017-05-24
Genre: Computers

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Computational Science and Its Applications ICCSA 2017

Author: Osvaldo Gervasi
Publisher: Springer
ISBN: 9783319623955
Release Date: 2017-07-04
Genre: Computers

The six-volume set LNCS 10404-10409 constitutes the refereed proceedings of the 17th International Conference on Computational Science and Its Applications, ICCSA 2017, held in Trieste, Italy, in July 2017. The 313 full papers and 12 short papers included in the 6-volume proceedings set were carefully reviewed and selected from 1052 submissions. Apart from the general tracks, ICCSA 2017 included 43 international workshops in various areas of computational sciences, ranging from computational science technologies to specific areas of computational sciences, such as computer graphics and virtual reality. Furthermore, this year ICCSA 2017 hosted the XIV International Workshop On Quantum Reactive Scattering. The program also featured 3 keynote speeches and 4 tutorials.

Fog Computing in the Internet of Things

Author: Amir M. Rahmani
Publisher: Springer
ISBN: 9783319576398
Release Date: 2017-06-29
Genre: Technology & Engineering

This book describes state-of-the-art approaches to Fog Computing, including the background of innovations achieved in recent years. Coverage includes various aspects of fog computing architectures for Internet of Things, driving reasons, variations and case studies. The authors discuss in detail key topics, such as meeting low latency and real-time requirements of applications, interoperability, federation and heterogeneous computing, energy efficiency and mobility, fog and cloud interplay, geo-distribution and location awareness, and case studies in healthcare and smart space applications.

Computer Vision for Assistive Healthcare

Author: Leo Marco
Publisher: Academic Press
ISBN: 9780128134467
Release Date: 2018-05-15
Genre: Computers

Computer Vision for Assistive Healthcare describes how advanced computer vision techniques provide tools to support common human needs, such as mental functioning, personal mobility, sensory functions, daily living activities, image processing, pattern recognition, machine learning and how language processing and computer graphics cooperate with robotics to provide such tools. Users will learn about the emerging computer vision techniques for supporting mental functioning, algorithms for analyzing human behavior, and how smart interfaces and virtual reality tools lead to the development of advanced rehabilitation systems able to perform human action and activity recognition. In addition, the book covers the technology behind intelligent wheelchairs, how computer vision technologies have the potential to assist blind people, and about the computer vision-based solutions recently employed for safety and health monitoring. Gives the state-of-the-art computer vision techniques and tools for assistive healthcare Includes a broad range of topic areas, ranging from image processing, pattern recognition, machine learning to robotics, natural language processing and computer graphics Presents a wide range of application areas, ranging from mobility, sensory substitution, and safety and security, to mental and physical rehabilitation and training Written by leading researchers in this growing field of research Describes the outstanding research challenges that still need to be tackled, giving researchers good indicators of research opportunities

Applied Deep Learning

Author: Umberto Michelucci
Publisher: Apress
ISBN: 9781484237908
Release Date: 2018-10-21
Genre: Computers

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.

Theorie der neuronalen Netze

Author: Raul Rojas
Publisher: Springer-Verlag
ISBN: 9783642612312
Release Date: 2013-03-07
Genre: Computers

Neuronale Netze sind ein Berechenbarkeitsparadigma, das in der Informatik zunehmende Beachtung findet. In diesem Buch werden theoretische Ansätze und Modelle, die in der Literatur verstreut sind, zu einer modellübergreifenden Theorie der künstlichen neuronalen Netze zusammengefügt. Mit ständigem Blick auf die Biologie wird - ausgehend von einfachsten Netzen - gezeigt, wie sich die Eigenschaften der Modelle verändern, wenn allgemeinere Berechnungselemente und Netztopologien eingeführt werden. Jedes Kapitel enthält Beispiele und ist ausführlich illustriert und durch bibliographische Anmerkungen abgerundet. Das Buch richtet sich an Leser, die sich einen Überblick verschaffen oder vorhandene Kenntnisse vertiefen wollen. Es ist als Grundlage für Neuroinformatikvorlesungen an deutschsprachigen Universitäten geeignet.

Hands On Neural Network Programming with C

Author: Matt R. Cole
Publisher: Packt Publishing Ltd
ISBN: 9781789619867
Release Date: 2018-09-29
Genre: Computers

Create and unleash the power of neural networks by implementing C# and .Net code Key Features Get a strong foundation of neural networks with access to various machine learning and deep learning libraries Real-world case studies illustrating various neural network techniques and architectures used by practitioners Cutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many more Book Description Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learn Understand perceptrons and how to implement them in C# Learn how to train and visualize a neural network using cognitive services Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp Detect specific image characteristics such as a face using Accord.Net Demonstrate particle swarm optimization using a simple XOR problem and Encog Train convolutional neural networks using ConvNetSharp Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques. Who this book is for This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book

Deep Learning for Beginners

Author: François Duval
Publisher: Createspace Independent Publishing Platform
ISBN: 1983843822
Release Date: 2018-01-13
Genre:

***** Buy now (Will soon return to $38.99 + Special Offer Below) ***** ***** #1 Kindle Store Bestseller in Computer Modelling ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Deep Learning? If you are looking for a book to help you understand concepts and algorithms of deep learning, then this is a good book for you. Several Visual Illustrations and Examples Equations are great for really understanding every last detail of an algorithm. But to get a basic idea of how things work, this book contains several graphs which detail each neural networks/deep learning algorithms. It is contains also several graphs for the practical examples. This Is a Practical Guide Book This book will help you explore exactly what deep learning is and will also teach you about why it is so revolutionary and fascinating. The chapters will introduce the reader to the concepts, techniques, and applications of deep learning algorithms with the practical case studies and walk-through examples on which to practice. This book takes a different approach that is based on providing simple examples of how deep learning algorithms work, and building on those examples step by step to encompass the more complicated parts of the algorithms. Target Users The book designed for a variety of target audiences. The most suitable users would include: Newbies in computer science techniques and deep learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on neural networks and deep learning What's inside this book? Pre-requisite for Deep Learning Introduction to Artificial Neural Networks The Basics of Artificial Neural Networks Deep Learning Evolution and Recurring Methods Relationship between machine learning and deep learning Multilayer Perceptron (MLP) Convolutional Neural Networks (CNN) Other Deep Learning Algorithms Deep Learning Applications Glossary of Some Useful Terms in Deep Learning Useful References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: If you want to learn more about deep learning, this book is for you. Little math knowledge is required. If you already have a basic notion in statistic and data science, you'll be OK. No coding experience is required. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a deep learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in deep learning and further learning will be required beyond this book to master all aspects of deep learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. will also be happy to help you if you send us an email at [email protected]

Artificial Intelligence By Example

Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 9781788990028
Release Date: 2018-05-31
Genre: Computers

Be an adaptive thinker that leads the way to Artificial Intelligence Key Features AI-based examples to guide you in designing and implementing machine intelligence Develop your own method for future AI solutions Acquire advanced AI, machine learning, and deep learning design skills Book Description Artificial Intelligence has the potential to replicate humans in every field. This book serves as a starting point for you to understand how AI is built, with the help of intriguing examples and case studies. Artificial Intelligence By Example will make you an adaptive thinker and help you apply concepts to real-life scenarios. Using some of the most interesting AI examples, right from a simple chess engine to a cognitive chatbot, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and IoT, and develop emotional quotient in chatbots using neural networks. You will move on to designing AI solutions in a simple manner rather than get confused by complex architectures and techniques. This comprehensive guide will be a starter kit for you to develop AI applications on your own. By the end of this book, will have understood the fundamentals of AI and worked through a number of case studies that will help you develop business vision. What you will learn Use adaptive thinking to solve real-life AI case studies Rise beyond being a modern-day factory code worker Acquire advanced AI, machine learning, and deep learning designing skills Learn about cognitive NLP chatbots, quantum computing, and IoT and blockchain technology Understand future AI solutions and adapt quickly to them Develop out-of-the-box thinking to face any challenge the market presents Who this book is for Artificial Intelligence by Example is a simple, explanatory, and descriptive guide for junior developers, experienced developers, technology consultants, and those interested in AI who want to understand the fundamentals of Artificial Intelligence and implement it practically by devising smart solutions. Prior experience with Python and statistical knowledge is essential to make the most out of this book.

Neural Networks for Beginners

Author: Thomas Laville
Publisher: Createspace Independent Publishing Platform
ISBN: 198137244X
Release Date: 2017-12-02
Genre:

Are you thinking of learning more techniques and algorithms in artificial neural networks? Then you have landed in the right place. The overall aim of this book is to give you an overview of the important concepts, methods and techniques used in artificial neural networks. Artificial neural networks are also generally referred to as neural networks. This signal processing model is based on a biological neural network. The theory test observations and later experiments of the central nervous system of the human brain system were the motivation for the development of neural networks. This book is about basic neural network architectures and the learning rules. Every effort has been made to present the material in simple and regular manner so that it can be read and used without difficulty. In final the chapters, case studies are provided to assist in the understanding of the workings of neural networks. Since this literature is written about neural networks in particular, our choice of topic is guided by one standard. We want to present the most useful picture of neural networks from the simple to a complex structure. Researchers from different disciplines are designing artificial neural networks to solve the problems of pattern recognition, prediction, optimization, associative memory, and control. A neural network is a complex architecture that consists of a network of interconnected neurons, and is a great alternative for solving complex problems when compared to conventional approaches. It incorporates a number of fundamental concepts. Book Organisation The organization of the book offers a great deal of flexibility for use in graduate level of neural network. Introduction, History and Background of neural network. Basic concepts to build Artificial Neural Networks. Extensive Study on Artificial Neural Network Architecture. Backpropagation Algorithm and its variant. Others Networks Algorithms Extensive literature covering every aspect of artificial neural network. Book Objectives The main purpose of this book is to provide the reader with the most fundamental knowledge on artificial neural networks so that they can understand what these are all about. This book will help you: Have an appreciation for neural networks and an understanding of their fundamental principles. Have an elementary grasp of neural network concepts and terms, which includes the ability to understand the algorithms. Have achieve a technical background in neural networks Target Users The book designed for a variety of target audiences. The most suitable users would include: Newbies in computer science techniques and neural networks Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on neural networks and deep learning

Deep Learning for the Layman

Author: François Duval
Publisher: Createspace Independent Publishing Platform
ISBN: 1984050621
Release Date: 2018-01-10
Genre: Artificial intelligence

***** Buy now (Will soon return to $35.99 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Deep Learning without Maths? This book has been written in layman's terms as an introduction to deep learning and neural networks and their algorithms. Each algorithm is explained very easily for more understanding. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images which detail all algorithms and their applications in all area of the real life. Why this book is different ? This book will help you explore exactly what deep learning is and will also teach you about why it is so revolutionary and fascinating. The chapters will introduce the reader to the concepts, techniques, and applications of deep learning algorithms with the practical case studies and walk-through examples on which to practice. This book takes a different approach that is based on providing simple examples of how deep learning algorithms work, and building on those examples step by step to encompass the more complicated parts of the algorithms. Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach deep learning, but are too afraid of complex math to start Newbies in computer science techniques and deep learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on neural networks and deep learning What's inside this book? Deep Learning: What & Why? Pre-requisite for Deep Learning Artificial Neural Networks: what and why? General Presentation of Deep Learning Multilayer Perceptron and Backpropagation: How they are work? Convolutional Neural Networks (CNN): How it is works? Other Deep Learning Algorithms Deep Learning Applications Our Future with Deep Learning Applied The Long-Term Vision of Deep Learning Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: If you want to learn more about deep learning, this book is for you.No math or coding knowledges is required. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a deep learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in deep learning and further learning will be required beyond this book to master all aspects of deep learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. will also be happy to help you if you send us an email at [email protected]