Elementary Differential Equations with Linear Algebra

Author: Albert L. Rabenstein
Publisher: Academic Press
ISBN: 9781483262376
Release Date: 2014-05-10
Genre: Mathematics

Elementary Differential Equations with Linear Algebra, Third Edition provides an introduction to differential equation and linear algebra. This book includes topics on numerical methods and Laplace transforms. Organized into nine chapters, this edition begins with an overview of an equation that involves a single unknown function of a single variable and some finite number of its derivatives. This text then examines a linear system of two equations with two unknowns. Other chapters consider a class of linear transformations that are defined on spaces of functions wherein these transformations are essential in the study of linear differential equations. This book discusses as well the linear differential equations whose coefficients are constant functions. The final chapter deals with the properties of Laplace transform in detail and examine as well the applications of Laplace transforms to differential equations. This book is a valuable resource for mathematicians, students, and research workers.

Ordinary Differential Equations and Linear Algebra A Systems Approach

Author: Todd Kapitula
Publisher: SIAM
ISBN: 9781611974096
Release Date: 2015-11-17
Genre: Mathematics

Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system.÷Ordinary Differential Equations and Linear Algebra: A Systems Approach÷systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.÷

Introduction to Linear Algebra and Differential Equations

Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486651916
Release Date: 1986
Genre: Mathematics

Excellent introductory text for students with one year of calculus. Topics include complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions and boundary-value problems. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

Differential Equations Linear Algebra

Author: Charles Henry Edwards
Publisher:
ISBN: 0138141029
Release Date: 2010
Genre: Algebras, Linear

For courses in Differential Equations and Linear Algebra. Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this text discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. In the Third Edition, new graphics and narrative have been added as needed-yet the proven chapter and section structure remains unchanged, so that class notes and syllabi will not require revision for the new edition.

Differential Equations with Applications and Historical Notes Third Edition

Author: George F. Simmons
Publisher: CRC Press
ISBN: 9781498702621
Release Date: 2016-11-17
Genre: Mathematics

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun
Publisher: Springer-Verlag
ISBN: 9783642973413
Release Date: 2013-03-13
Genre: Mathematics

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

Differential Equations and Linear Algebra

Author: Stephen W. Goode
Publisher: Pearson Higher Ed
ISBN: 9780130457943
Release Date: 2007
Genre: Mathematics

For combined differential equations and linear algebra courses teaching students who have successfully completed three semesters of calculus. This complete introduction to both differential equations and linear algebra presents a carefully balanced and sound integration of the two topics. It promotes in-depth understanding rather than rote memorization, enabling students to fully comprehend abstract concepts and leave the course with a solid foundation in linear algebra. Flexible in format, it explains concepts clearly and logically with an abundance of examples and illustrations, without sacrificing level or rigor. A vast array of problems supports the material, with varying levels from which students/instructors can choose.

Differential Equations and Linear Algebra Pearson New International Edition

Author: C. Henry Edwards
Publisher: Pearson Higher Ed
ISBN: 9781292052809
Release Date: 2013-10-03
Genre: Mathematics

For courses in Differential Equations and Linear Algebra. Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this text discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. In the Third Edition, new graphics and narrative have been added as needed—yet the proven chapter and section structure remains unchanged, so that class notes and syllabi will not require revision for the new edition.

Ordinary Differential Equations

Author: Hartmut Logemann
Publisher: Springer
ISBN: 9781447163985
Release Date: 2014-07-08
Genre: Mathematics

The book comprises a rigorous and self-contained treatment of initial-value problems for ordinary differential equations. It additionally develops the basics of control theory, which is a unique feature in current textbook literature. The following topics are particularly emphasised: • existence, uniqueness and continuation of solutions, • continuous dependence on initial data, • flows, • qualitative behaviour of solutions, • limit sets, • stability theory, • invariance principles, • introductory control theory, • feedback and stabilization. The last two items cover classical control theoretic material such as linear control theory and absolute stability of nonlinear feedback systems. It also includes an introduction to the more recent concept of input-to-state stability. Only a basic grounding in linear algebra and analysis is assumed. Ordinary Differential Equations will be suitable for final year undergraduate students of mathematics and appropriate for beginning postgraduates in mathematics and in mathematically oriented engineering and science.

The Numerical Solution of Ordinary and Partial Differential Equations

Author: Granville Sewell
Publisher: World Scientific
ISBN: 9789814635110
Release Date: 2014-12-16
Genre: Mathematics

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

Grundlagen der Linearen Algebra f r Dummies

Author: Mary Jane Sterling
Publisher: VCH
ISBN: 3527706208
Release Date: 2010
Genre:

Für so manchen Zeitgenossen ist das Land Mathematien wüst und grau und der Weg, die Lineare Algebra zu verstehen, ist besonders stolpersteinig und öd. Aber haben Sie erst einmal die Grundlagen verstanden, ist der Rest nur noch halb so schwer. Mary Jane Sterling hilft Ihnen in diesem Buch auf die Sprünge. Sie erklärt Ihnen, wie Sie mit Vektoren rechnen, die Matrizenalgebra meistern, Linearkombinationen in ihre Schranken weisen, sich behende im Vektorraum bewegen, Eigenwert und Eigenvektor zu guten Freunden machen und vieles mehr. Stellen Sie mit diesem Buch Ihre Kenntnisse der Linearen Algebra auf eine solide Grundlage.

Lineare Algebra

Author: Gilbert Strang
Publisher: Springer-Verlag
ISBN: 9783642556319
Release Date: 2013-03-07
Genre: Mathematics

Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.