Differential Geometry

Author: Erwin Kreyszig
Publisher: Courier Corporation
ISBN: 9780486318622
Release Date: 2013-04-26
Genre: Mathematics

An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Differential Geometry

Author: R.W. Sharpe
Publisher: Springer Science & Business Media
ISBN: 0387947329
Release Date: 1997-06-12
Genre: Mathematics

Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces giniralisis" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 9780821848159
Release Date: 2009
Genre: Mathematics

Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

An Introduction to Differential Geometry

Author: T. J. Willmore
Publisher: Courier Corporation
ISBN: 9780486282107
Release Date: 2013-05-13
Genre: Mathematics

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Differential Geometry

Author: Heinrich W. Guggenheimer
Publisher: Courier Corporation
ISBN: 9780486157207
Release Date: 2012-04-27
Genre: Mathematics

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.

Differential Geometry

Author: Wolfgang Kühnel
Publisher: American Mathematical Soc.
ISBN: 9781470423209
Release Date: 2015-12-22
Genre: Curves

This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and--as a new feature--a good number of solutions to selected exercises.

Differential Geometry

Author: J. J. Stoker
Publisher: John Wiley & Sons
ISBN: 9781118165478
Release Date: 2011-09-09
Genre: Mathematics

This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.

DIFFERENTIAL GEOMETRY OF MANIFOLDS

Author: QUDDUS KHAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120346505
Release Date: 2012-09-03
Genre: Mathematics

Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, while trying to answer them using calculus techniques. The geometry of differentiable manifolds with structures is one of the most important branches of modern differential geometry. This well-written book discusses the theory of differential and Riemannian manifolds to help students understand the basic structures and consequent developments. While introducing concepts such as bundles, exterior algebra and calculus, Lie group and its algebra and calculus, Riemannian geometry, submanifolds and hypersurfaces, almost complex manifolds, etc., enough care has been taken to provide necessary details which enable the reader to grasp them easily. The material of this book has been successfully tried in classroom teaching. The book is designed for the postgraduate students of Mathematics. It will also be useful to the researchers working in the field of differential geometry and its applications to general theory of relativity and cosmology, and other applied areas. KEY FEATURES  Provides basic concepts in an easy-to-understand style.  Presents the subject in a natural way.  Follows a coordinate-free approach.  Includes a large number of solved examples and illuminating illustrations.  Gives notes and remarks at appropriate places.

A Course in Differential Geometry

Author: Thierry Aubin
Publisher: American Mathematical Soc.
ISBN: 0821872141
Release Date: 2001
Genre: Mathematics

This textbook for second-year graduate students is an introduction to differential geometry with principal emphasis on Riemannian geometry. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

Differential Geometry of Curves and Surfaces

Author: Manfredo P. do Carmo
Publisher: Courier Dover Publications
ISBN: 9780486806990
Release Date: 2016-12-14
Genre: Mathematics

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

Differential Geometry

Author: Courant Institute of Mathematical Sciences
Publisher: Krishna Prakashan Media
ISBN:
Release Date:
Genre:


Differential Geometry of Curves and Surfaces

Author: Kristopher Tapp
Publisher: Springer
ISBN: 9783319397993
Release Date: 2016-09-30
Genre: Mathematics

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.

Topics in Modern Differential Geometry

Author: Stefan Haesen
Publisher: Springer
ISBN: 9789462392403
Release Date: 2016-12-21
Genre: Mathematics

A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

Applicable Differential Geometry

Author: Mike Crampin
Publisher: Cambridge University Press
ISBN: 0521231906
Release Date: 1986
Genre: Mathematics

An introduction to geometrical topics used in applied mathematics and theoretical physics.