Differential Geometry

Author: J. J. Stoker
Publisher: John Wiley & Sons
ISBN: 9781118165478
Release Date: 2011-09-09
Genre: Mathematics

This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.

Differential Geometry Valencia 2001

Author: Olga Gil-Medrano
Publisher: World Scientific
ISBN: 981277775X
Release Date: 2002
Genre: Electronic books

This volume presents the proceedings of a conference on differential geometry held in honour of the 60th birthday of A M Naveira. The meeting brought together distinguished researchers from a variety of areas in Riemannian geometry. The topics include: geometry of the curvature tensor, variational problems for geometric functionals such as WillmoreOCoChen tension, volume and energy of foliations and vector fields, and energy of maps. Many papers concern special submanifolds in Riemannian and Lorentzian manifolds, such as those with constant mean (scalar, Gauss, etc.) curvature and those with finite total curvature."

Fundamentals of Differential Geometry

Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9781461205418
Release Date: 2012-12-06
Genre: Mathematics

This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 9780821848159
Release Date: 2009
Genre: Mathematics

Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

Differential Geometry and Its Applications

Author: John Oprea
Publisher: MAA
ISBN: 0883857480
Release Date: 2007-09-06
Genre: Mathematics

Differential geometry has a long, wonderful history it has found relevance in areas ranging from machinery design of the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole, it mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors, it is also for students in engineering and the sciences. Into the mix of these ideas comes the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only “see” geodesics on surfaces, but they will also see the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. Students will also see how particles move under constraints. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.

A Course in Differential Geometry

Author: Thierry Aubin
Publisher: American Mathematical Soc.
ISBN: 0821872141
Release Date: 2001
Genre: Mathematics

This textbook for second-year graduate students is an introduction to differential geometry with principal emphasis on Riemannian geometry. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

Aspects of Differential Geometry I

Author: Peter Gilkey
Publisher: Morgan & Claypool Publishers
ISBN: 9781627056632
Release Date: 2015-02-01
Genre: Mathematics

Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. In Book I, we focus on preliminaries. Chapter 1 provides an introduction to multivariable calculus and treats the Inverse Function Theorem, Implicit Function Theorem, the theory of the Riemann Integral, and the Change of Variable Theorem. Chapter 2 treats smooth manifolds, the tangent and cotangent bundles, and Stokes' Theorem. Chapter 3 is an introduction to Riemannian geometry. The Levi-Civita connection is presented, geodesics introduced, the Jacobi operator is discussed, and the Gauss-Bonnet Theorem is proved. The material is appropriate for an undergraduate course in the subject. We have given some different proofs than those that are classically given and there is some new material in these volumes. For example, the treatment of the Chern-Gauss-Bonnet Theorem for pseudo-Riemannian manifolds with boundary is new.

Differential Geometry

Author: William C. Graustein
Publisher: Courier Corporation
ISBN: 9780486153230
Release Date: 2012-04-19
Genre: Mathematics

This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of 3 dimensions, using vector notation and technique. Nearly 200 problems.1935 edition.

DIFFERENTIAL GEOMETRY OF MANIFOLDS

Author: QUDDUS KHAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120346505
Release Date: 2012-09-03
Genre: Mathematics

Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, while trying to answer them using calculus techniques. The geometry of differentiable manifolds with structures is one of the most important branches of modern differential geometry. This well-written book discusses the theory of differential and Riemannian manifolds to help students understand the basic structures and consequent developments. While introducing concepts such as bundles, exterior algebra and calculus, Lie group and its algebra and calculus, Riemannian geometry, submanifolds and hypersurfaces, almost complex manifolds, etc., enough care has been taken to provide necessary details which enable the reader to grasp them easily. The material of this book has been successfully tried in classroom teaching. The book is designed for the postgraduate students of Mathematics. It will also be useful to the researchers working in the field of differential geometry and its applications to general theory of relativity and cosmology, and other applied areas. KEY FEATURES  Provides basic concepts in an easy-to-understand style.  Presents the subject in a natural way.  Follows a coordinate-free approach.  Includes a large number of solved examples and illuminating illustrations.  Gives notes and remarks at appropriate places.

Differential Geometry and Mathematical Physics

Author: John K. Beem
Publisher: American Mathematical Soc.
ISBN: 9780821851722
Release Date: 1994
Genre: Mathematics

This book contains the proceedings of the Special Session, Geometric Methods in Mathematical Physics, held at the joint AMS-CMS meeting in Vancouver in August 1993. The papers collected here contain a number of new results in differential geometry and its applications to physics. The major themes include black holes, singularities, censorship, the Einstein field equations, geodesics, index theory, submanifolds, CR-structures, and space-time symmetries. In addition, there are papers on Yang-Mills fields, geometric techniques in control theory, and equilibria. Containing new results by established researchers in the field, this book provides a look at developments in this exciting area of research.

Differential Geometry

Author: Loring W. Tu
Publisher: Springer
ISBN: 9783319550848
Release Date: 2017-07-01
Genre: Mathematics

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Modern Differential Geometry of Curves and Surfaces with Mathematica Second Edition

Author: mary Gray
Publisher: CRC Press
ISBN: 0849371643
Release Date: 1997-12-29
Genre: Mathematics

The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for constructing new curves and surfaces from old. The book also explores how to apply techniques from analysis. Although the book makes extensive use of Mathematica, readers without access to that program can perform the calculations in the text by hand. While single- and multi-variable calculus, some linear algebra, and a few concepts of point set topology are needed to understand the theory, no computer or Mathematica skills are required to understand the concepts presented in the text. In fact, it serves as an excellent introduction to Mathematica, and includes fully documented programs written for use with Mathematica. Ideal for both classroom use and self-study, Modern Differential Geometry of Curves and Surfaces with Mathematica has been tested extensively in the classroom and used in professional short courses throughout the world.

Differential Geometry

Author: R.W. Sharpe
Publisher: Springer Science & Business Media
ISBN: 0387947329
Release Date: 2000-11-21
Genre: Mathematics

Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.

Differential Geometry

Author: Erwin Kreyszig
Publisher: Courier Corporation
ISBN: 9780486318622
Release Date: 2013-04-26
Genre: Mathematics

An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Differential Geometry

Author: Clifford Henry Taubes
Publisher: Oxford University Press
ISBN: 9780199605880
Release Date: 2011-10-13
Genre: Mathematics

Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.