Discovering Knowledge in Data

Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 9781118873571
Release Date: 2014-06-02
Genre: Computers

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

Data Mining and Learning Analytics

Author: Samira ElAtia
Publisher: John Wiley & Sons
ISBN: 9781118998212
Release Date: 2016-09-20
Genre: Computers

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Modern Computational Models of Semantic Discovery in Natural Language

Author: Žižka, Jan
Publisher: IGI Global
ISBN: 9781466686915
Release Date: 2015-07-17
Genre: Computers

Language—that is, oral or written content that references abstract concepts in subtle ways—is what sets us apart as a species, and in an age defined by such content, language has become both the fuel and the currency of our modern information society. This has posed a vexing new challenge for linguists and engineers working in the field of language-processing: how do we parse and process not just language itself, but language in vast, overwhelming quantities? Modern Computational Models of Semantic Discovery in Natural Language compiles and reviews the most prominent linguistic theories into a single source that serves as an essential reference for future solutions to one of the most important challenges of our age. This comprehensive publication benefits an audience of students and professionals, researchers, and practitioners of linguistics and language discovery. This book includes a comprehensive range of topics and chapters covering digital media, social interaction in online environments, text and data mining, language processing and translation, and contextual documentation, among others.

Data Mining and Predictive Analytics

Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 9781118868706
Release Date: 2015-03-16
Genre: Computers

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Data Mining the Web

Author: Zdravko Markov
Publisher: John Wiley & Sons
ISBN: 9780470108086
Release Date: 2007-04-06
Genre: Computers

This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).

Practical Text Mining with Perl

Author: Roger Bilisoly
Publisher: Wiley
ISBN: 0470176431
Release Date: 2008-08-18
Genre: Computers

Provides readers with the methods, algorithms, and means to perform text mining tasks This book is devoted to the fundamentals of text mining using Perl, an open-source programming tool that is freely available via the Internet (www.perl.org). It covers mining ideas from several perspectives--statistics, data mining, linguistics, and information retrieval--and provides readers with the means to successfully complete text mining tasks on their own. The book begins with an introduction to regular expressions, a text pattern methodology, and quantitative text summaries, all of which are fundamental tools of analyzing text. Then, it builds upon this foundation to explore: Probability and texts, including the bag-of-words model Information retrieval techniques such as the TF-IDF similarity measure Concordance lines and corpus linguistics Multivariate techniques such as correlation, principal components analysis, and clustering Perl modules, German, and permutation tests Each chapter is devoted to a single key topic, and the author carefully and thoughtfully introduces mathematical concepts as they arise, allowing readers to learn as they go without having to refer to additional books. The inclusion of numerous exercises and worked-out examples further complements the book's student-friendly format. Practical Text Mining with Perl is ideal as a textbook for undergraduate and graduate courses in text mining and as a reference for a variety of professionals who are interested in extracting information from text documents.

Data Mining Algorithms

Author: Pawel Cichosz
Publisher: John Wiley & Sons
ISBN: 9781118950807
Release Date: 2014-11-17
Genre: Mathematics

Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

Data mining applications for empowering knowledge societies

Author: Hakikur Rahman
Publisher: Information Science Publishing
ISBN: 1599046571
Release Date: 2009
Genre: Business & Economics

"This book presents an overview on the main issues of data mining, including its classification, regression, clustering, and ethical issues"--Provided by publisher.

Data Mining

Author: Sushmita Mitra
Publisher: John Wiley & Sons
ISBN: 0471474886
Release Date: 2005-01-21
Genre: Computers

First title to ever present soft computing approaches and theirapplication in data mining, along with the traditionalhard-computing approaches Addresses the principles of multimedia data compressiontechniques (for image, video, text) and their role in datamining Discusses principles and classical algorithms on stringmatching and their role in data mining

Data Mining Techniques in Grid Computing Environments

Author: Werner Dubitzky
Publisher: John Wiley & Sons
ISBN: 9780470699898
Release Date: 2008-10-13
Genre: Medical

Based around eleven international real life case studies and including contributions from leading experts in the field this groundbreaking book explores the need for the grid-enabling of data mining applications and provides a comprehensive study of the technology, techniques and management skills necessary to create them. This book provides a simultaneous design blueprint, user guide, and research agenda for current and future developments and will appeal to a broad audience; from developers and users of data mining and grid technology, to advanced undergraduate and postgraduate students interested in this field.

Choice

Author:
Publisher:
ISBN: UOM:49015003465979
Release Date: 2008-03
Genre: Best books


Computer Applications for Handling Legal Evidence Police Investigation and Case Argumentation

Author: Ephraim Nissan
Publisher: Springer Science & Business Media
ISBN: 9789048189908
Release Date: 2012-06-15
Genre: Social Science

This book provides an overview of computer techniques and tools — especially from artificial intelligence (AI) — for handling legal evidence, police intelligence, crime analysis or detection, and forensic testing, with a sustained discussion of methods for the modelling of reasoning and forming an opinion about the evidence, methods for the modelling of argumentation, and computational approaches to dealing with legal, or any, narratives. By the 2000s, the modelling of reasoning on legal evidence has emerged as a significant area within the well-established field of AI & Law. An overview such as this one has never been attempted before. It offers a panoramic view of topics, techniques and tools. It is more than a survey, as topic after topic, the reader can get a closer view of approaches and techniques. One aim is to introduce practitioners of AI to the modelling legal evidence. Another aim is to introduce legal professionals, as well as the more technically oriented among law enforcement professionals, or researchers in police science, to information technology resources from which their own respective field stands to benefit. Computer scientists must not blunder into design choices resulting in tools objectionable for legal professionals, so it is important to be aware of ongoing controversies. A survey is provided of argumentation tools or methods for reasoning about the evidence. Another class of tools considered here is intended to assist in organisational aspects of managing of the evidence. Moreover, tools appropriate for crime detection, intelligence, and investigation include tools based on link analysis and data mining. Concepts and techniques are introduced, along with case studies. So are areas in the forensic sciences. Special chapters are devoted to VIRTOPSY (a procedure for legal medicine) and FLINTS (a tool for the police). This is both an introductory book (possibly a textbook), and a reference for specialists from various quarters.

Modeling Techniques in Predictive Analytics

Author: Thomas W. Miller
Publisher: FT Press
ISBN: 9780133886191
Release Date: 2014-09-29
Genre: Computers

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more