Author: Edgar G. Goodaire
Publisher: Prentice Hall
ISBN: 0131679953
Release Date: 2006
Genre: Mathematics

Far more "user friendly" than the vast majority of similar books, this volume is truly written with the unsophisticated reader in mind. The pace is leisurely, but the authors are rigorous and maintain a serious attitude towards theorem proving throughout. Emphasizes "Active Reading" throughout, a skill vital to success in learning how to write proofs. Offers two sections on probability (2.4 and 2.5). Moves material on depth-first search, which previously comprised an entire (very short) chapter, to an earlier chapter where it fits more naturally. Rewrites section on RNA chains to include a new (and easier) algorithm for the recovery of an RNA chain from its complete enzyme digest. Provides true/false questions (with all answers in the back of the book) in every section. Features an appendix on matrices. A useful reference for mathematics enthusiasts who want to learn how to write proofs.

Author: Edgar G. Goodaire
Publisher:
ISBN: 0130920002
Release Date: 2002
Genre: Computers

For courses in Discrete Mathematics. Adopting a user-friendly, conversational-and at times humorous-style, these authors make the principles and practices of discrete mathematics as stimulating as possible while presenting comprehensive, rigorous coverage. Examples and exercises integrated throughout each chapter serve to pique student interest and bring clarity to even the most complex concepts. Above all, the book is designed to engage todays students in the interesting, applicable facets of modern mathematics. *NEW - Chapter One is completely rewritten - Includes new sections on truth tables, the algebra of propositions and logical arguments. Provides students with greater coverage of logic and truth tables at the beginning of the text. *NEW - Most algorithms have been rewritten. Allows students to see algorithms in a less casual way so as to more closely resemble computer code. *NEW - Review exercises - Added to the end of every chapter. Helps students to review and reinforce text concepts. *NEW - Emphasis on writing and critical thinking skills, allows students to strengthen their skills in these areas. *More than 200 worked examples and problems as well as over 2500 exercises

Author: Edgar G. Goodaire
Publisher: Pearson College Division
ISBN: 0132245884
Release Date: 2005-08-01
Genre: Education

This package contains the following components: -0131679953: Discrete Mathematics with Graph Theory -0130463272: Discrete Math Workbook: Interactive Exercises

Author: David J. Hunter
Publisher: Jones & Bartlett Publishers
ISBN: 9781284056242
Release Date: 2015-08-31
Genre: Computers

Written for the one-term course, the Third Edition of Essentials of Discrete Mathematics is designed to serve computer science majors as well as students from a wide range of disciplines. The material is organized around five types of thinking: logical, relational, recursive, quantitative, and analytical. This presentation results in a coherent outline that steadily builds upon mathematical sophistication. Graphs are introduced early and referred to throughout the text, providing a richer context for examples and applications. tudents will encounter algorithms near the end of the text, after they have acquired the skills and experience needed to analyze them. The final chapter contains in-depth case studies from a variety of fields, including biology, sociology, linguistics, economics, and music.

MATHEMATICS: A DISCRETE INTRODUCTION teaches students the fundamental concepts in discrete mathematics and proof-writing skills. With its clear presentation, the text shows students how to present cases logically beyond this course. All of the material is directly applicable to computer science and engineering, but it is presented from a mathematician’s perspective. Students will learn that discrete mathematics is very useful, especially those whose interests lie in computer science and engineering, as well as those who plan to study probability, statistics, operations research, and other areas of applied mathematics. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 9780429757082
Release Date: 2018-11-05
Genre: Computers

Graph Theory and Its Applications, Third Edition is the latest edition of the international, bestselling textbook for undergraduate courses in graph theory, yet it is expansive enough to be used for graduate courses as well. The textbook takes a comprehensive, accessible approach to graph theory, integrating careful exposition of classical developments with emerging methods, models, and practical needs. The authors’ unparalleled treatment is an ideal text for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology. Features of the Third Edition Expanded coverage on several topics (e.g., applications of graph coloring and tree-decompositions) Provides better coverage of algorithms and algebraic and topological graph theory than any other text Incorporates several levels of carefully designed exercises that promote student retention and develop and sharpen problem-solving skills Includes supplementary exercises to develop problem-solving skills, solutions and hints, and a detailed appendix, which reviews the textbook’s topics About the Authors Jonathan L. Gross is a professor of computer science at Columbia University. His research interests include topology and graph theory. Jay Yellen is a professor of mathematics at Rollins College. His current areas of research include graph theory, combinatorics, and algorithms. Mark Anderson is also a mathematics professor at Rollins College. His research interest in graph theory centers on the topological or algebraic side.

Stimulating and accessible, this undergraduate-level text covers basic graph theory, colorings of graphs, circuits and cycles, labeling graphs, drawings of graphs, measurements of closeness to planarity, graphs on surfaces, and applications and algorithms. 1994 edition.

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.

Suitable for an introductory combinatorics course lasting one or two semesters, this book includes an extensive list of problems, ranging from routine exercises to research questions. It walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some the progress made in the area.

Taking an approach to the subject that is suitable for a broad readership, Discrete Mathematics: Proofs, Structures, and Applications, Third Edition provides a rigorous yet accessible exposition of discrete mathematics, including the core mathematical foundation of computer science. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined later in the book. This edition preserves the philosophy of its predecessors while updating and revising some of the content. New to the Third Edition In the expanded first chapter, the text includes a new section on the formal proof of the validity of arguments in propositional logic before moving on to predicate logic. This edition also contains a new chapter on elementary number theory and congruences. This chapter explores groups that arise in modular arithmetic and RSA encryption, a widely used public key encryption scheme that enables practical and secure means of encrypting data. This third edition also offers a detailed solutions manual for qualifying instructors. Exploring the relationship between mathematics and computer science, this text continues to provide a secure grounding in the theory of discrete mathematics and to augment the theoretical foundation with salient applications. It is designed to help readers develop the rigorous logical thinking required to adapt to the demands of the ever-evolving discipline of computer science.

This textbook, now in its fourth edition, continues to provide an accessible introduction to discrete mathematics and graph theory. The introductory material on Mathematical Logic is followed by extensive coverage of combinatorics, recurrence relation, binary relations, coding theory, distributive lattice, bipartite graphs, trees, algebra, and Polya’s counting principle. A number of selected results and methods of discrete mathematics are discussed in a logically coherent fashion from the areas of mathematical logic, set theory, combinatorics, binary relation and function, Boolean lattice, planarity, and group theory. There is an abundance of examples, illustrations and exercises spread throughout the book. A good number of problems in the exercises help students test their knowledge. The text is intended for the undergraduate students of Computer Science and Engineering as well as to the students of Mathematics and those pursuing courses in the areas of Computer Applications and Information Technology. New to the Fourth Edition • Introduces new section on Arithmetic Function in Chapter 9. • Elaborates enumeration of spanning trees of wheel graph, fan graph and ladder graph. • Redistributes most of the problems given in exercises section-wise. • Provides many additional definitions, theorems, examples and exercises. • Gives elaborate hints for solving exercise problems.

Outstanding introductory treatment, geared toward advanced undergraduates and graduate students who require knowledge of graph theory. The first nine chapters constitute an excellent overview; the remaining chapters are more advanced and provide material for a variety of courses. 1974 edition.

Author: Noga Alon
Publisher: John Wiley & Sons
ISBN: 9781119062073
Release Date: 2015-11-02
Genre: Mathematics

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.