Doing Bayesian Data Analysis

Author: John Kruschke
Publisher: Academic Press
ISBN: 9780124059160
Release Date: 2014-11-11
Genre: Mathematics

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and JAGS software Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) Coverage of experiment planning R and JAGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 9783709169445
Release Date: 2013-03-11
Genre: Mathematics

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 9783897216501
Release Date: 2010-12-31
Genre: Computers

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Statistik Workshop f r Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 9783868993431
Release Date: 2012-05-31
Genre: Computers

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Die Berechnung der Zukunft

Author: Nate Silver
Publisher: Heyne Verlag
ISBN: 9783641112707
Release Date: 2013-09-02
Genre: Business & Economics

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Chaos auf High Heels

Author: Jennifer Crusie
Publisher: HarperCollins
ISBN: 9783955764128
Release Date: 2015-01-10
Genre: Fiction

Sexy Verwirrspiele, schlagfertige Dialoge und reichlich verschüttete Drinks - eine hinreißend witzige Romantic-Comedy von der Bestsellerautorin Jennifer Crusie. "Was für einen Wein möchtest du?" "Beeindrucke mich mit deiner Expertise." "Wir nehmen Rot." "Ich bin beeindruckt." Undercover-Agent Alec Prentice glaubt, Dennie Banks sei kriminell. Zwar ein sexy Hingucker mit toller Figur und sinnlichen Lippen, trotzdem: kriminell. Journalistin Dennie Banks dagegen denkt, Alec sei ein kompletter Trottel, neben dem ihr Yorkshireterrier Walter wie Einstein wirkt. Ständig kreuzt Alec ihren Weg im Hotel, in dem sie auf ein Interview hofft! Als hätte er nichts Besseres zu tun, als sie zu einem Glas Wein einzuladen. Aber ohne Alec kein Kontakt und ohne Kontakt kein Interview, also sagt sie Ja - zu dem Glas Wein. Dabei ist ihr sonnenklar, dass hier keiner niemandem vertrauen kann ...

Computational Modeling of Cognition and Behavior

Author: Simon Farrell
Publisher: Cambridge University Press
ISBN: 9781108548243
Release Date: 2018-02-22
Genre: Psychology

Computational modeling is now ubiquitous in psychology, and researchers who are not modelers may find it increasingly difficult to follow the theoretical developments in their field. This book presents an integrated framework for the development and application of models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models. Both the development of models and key features of any model are covered, as are the applications of models in a variety of domains across the behavioural sciences. A number of chapters are devoted to fitting models using maximum likelihood and Bayesian estimation, including fitting hierarchical and mixture models. Model comparison is described as a core philosophy of scientific inference, and the use of models to understand theories and advance scientific discourse is explained.

Einf hrung in die Bayes Statistik

Author: Karl-Rudolf Koch
Publisher: Springer-Verlag
ISBN: 9783642569708
Release Date: 2013-03-07
Genre: Science

Das Buch führt auf einfache und verständliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schätzung unbekannter Parameter, die Festlegung von Konfidenzregionen für die unbekannten Parameter und die Prüfung von Hypothesen für die Parameter abgeleitet. Angewendet werden die Verfahren für die Parameterschätzung im linearen Modell, für die Parameterschätzung, die sich robust gegenüber Ausreißern in den Beobachtungen verhält, für die Prädiktion und Filterung, die Varianz- und Kovarianzkomponentenschätzung und die Mustererkennung. Für Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht lösen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt.

The Oxford Handbook of Computational and Mathematical Psychology

Author: Jerome R. Busemeyer
Publisher: Oxford University Press
ISBN: 9780199958009
Release Date: 2015-03-20
Genre: Psychology

This Oxford Handbook offers a comprehensive and authoritative review of important developments in computational and mathematical psychology. With chapters written by leading scientists across a variety of subdisciplines, it examines the field's influence on related research areas such as cognitive psychology, developmental psychology, clinical psychology, and neuroscience. The Handbook emphasizes examples and applications of the latest research, and will appeal to readers possessing various levels of modeling experience. The Oxford Handbook of Computational and mathematical Psychology covers the key developments in elementary cognitive mechanisms (signal detection, information processing, reinforcement learning), basic cognitive skills (perceptual judgment, categorization, episodic memory), higher-level cognition (Bayesian cognition, decision making, semantic memory, shape perception), modeling tools (Bayesian estimation and other new model comparison methods), and emerging new directions in computation and mathematical psychology (neurocognitive modeling, applications to clinical psychology, quantum cognition). The Handbook would make an ideal graduate-level textbook for courses in computational and mathematical psychology. Readers ranging from advanced undergraduates to experienced faculty members and researchers in virtually any area of psychology--including cognitive science and related social and behavioral sciences such as consumer behavior and communication--will find the text useful.

Bayesian Models for Astrophysical Data

Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 9781108210744
Release Date: 2017-04-27
Genre: Mathematics

This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Mathe Manga Statistik

Author: Shin Takahashi
Publisher: Springer-Verlag
ISBN: 3834805661
Release Date: 2008-10-28
Genre: Mathematics

Statistik ist trocken und macht keinen Spaß? Falsch! Mit diesem Manga lernt man die Grundlagen der Statistik kennen, kann sie in zahlreichen Aufgaben anwenden und anhand der Lösungen seinen Lernfortschritt überprüfen – und hat auch noch eine Menge Spaß dabei! Eigentlich will die Schülerin Rui nur einen Arbeitskollegen ihres Vaters beeindrucken und nimmt daher Nachhilfe in Statistik. Doch schnell bemerkt auch sie, wie interessant Statistik sein kann, wenn man beispielsweise Statistiken über Nudelsuppen erstellt. Nur ihren Lehrer hatte sich Rui etwas anders vorgestellt, er scheint ein langweiliger Streber zu sein – oder?

R f r Dummies

Author: Andrie de Vries
Publisher: John Wiley & Sons
ISBN: 9783527812523
Release Date: 2017-11-07
Genre: Computers

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Mathematik f r Ingenieure

Author: Joachim Erven
Publisher: Walter de Gruyter
ISBN: 9783486707960
Release Date: 2011-05-01
Genre: Mathematics

Mathematik - muss das sein? Ja, und mit den Beispielen in diesem Buch macht's sogar Spaß. Denn hier wird Mathematik anhand alltäglicher Probleme erklärt. So lassen sich mathematische Grundlagen darstellen und Methoden und Werkzeuge entwickeln. Die ganze fürs Studium notwendige Mathematik wird anwendbar präsentiert. Zahlreiche Bilder und ausführlich durchgerechnete Beispiele veranschaulichen den Stoff; viele Übungsaufgaben mit Lösungen machen fit für die Prüfung.