Electric Machinery and Power System Fundamentals

Author: Stephen J. Chapman
ISBN: STANFORD:36105110188591
Release Date: 2002
Genre: Electric machinery

This book is intended for a course that combines machinery and power systems into one semester. It is designed to be flexible and to allow instructors to choose chapters a la carte, so the instructor controls the emphasis. The text gives students the information they need to become real-world engineers, focusing on principles and teaching how to use information as opposed to doing a lot of calculations that would rarely be done by a practising engineer. The author compresses the material by focusing on its essence, underlying principles. MATLAB is used throughout the book in examples and problems.

Electrical Machines

Author: Jacek F. Gieras
Publisher: CRC Press
ISBN: 9781498708869
Release Date: 2016-10-14
Genre: Technology & Engineering

This book endeavors to break the stereotype that basic electrical machine courses are limited only to transformers, DC brush machines, induction machines, and wound-field synchronous machines. It is intended to serve as a textbook for basic courses on Electrical Machines covering the fundamentals of the electromechanical energy conversion, transformers, classical electrical machines, i.e., DC brush machines, induction machines, wound-field rotor synchronous machines and modern electrical machines, i.e., switched reluctance machines (SRM) and permanent magnet (PM) brushless machines. In addition to academic research and teaching, the author has worked for over 18 years in US high-technology corporative businesses providing solutions to problems such as design, simulation, manufacturing and laboratory testing of large variety of electrical machines for electric traction, energy generation, marine propulsion, and aerospace electric systems.

Advanced Electrical Drives

Author: Rik De Doncker
Publisher: Springer Science & Business Media
ISBN: 9400701810
Release Date: 2010-11-30
Genre: Technology & Engineering

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.

Electric Powertrain

Author: John G. Hayes
Publisher: John Wiley & Sons
ISBN: 9781119063667
Release Date: 2017-11-13
Genre: Technology & Engineering

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience.

Power System Dynamics

Author: Jan Machowski
Publisher: John Wiley & Sons
ISBN: 9781119965053
Release Date: 2011-08-31
Genre: Technology & Engineering

This book is the fully revised and updated second edition of Power System Dynamics and Stability published in 1997. The modified title Power System Dynamics: Stability and Control reflects a slight shift in focus from solely describing power system dynamics to the means of dealing with them. The book has been expanded by about a third to include: a new chapter on wind power generation; a new section on wide-area measurement systems (WAMS) and their application for real-time control; an overview of lessons learned from wide-spread blackouts affecting North America and Europe in 2003, 2004 and 2006; enhanced treatment of voltage stability and control, and frequency stability and control; application of Lyapunov direct method to analyse and enhance stability of multi-machine power systems ; expanded coverage of steady-state stability using eigenvalue analysis, including modal analysis of dynamic equivalents. The book continues the successful approach of the first edition by progressing from simplicity to complexity. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The reader will appreciate the authors’ accessible approach as the book is illustrated by over 400 diagrams and a large number of examples. Power System Dynamics: Stability and Control, Second Edition is an essential resource for graduates of electrical engineering. It is also a clear and comprehensive reference text for undergraduate students, and for practising engineers and researchers who are working in electricity companies or in the development of power system technologies.

Advanced Electric Drive Vehicles

Author: Ali Emadi
Publisher: CRC Press
ISBN: 9781466597709
Release Date: 2014-10-24
Genre: Technology & Engineering

Electrification is an evolving paradigm shift in the transportation industry toward more efficient, higher performance, safer, smarter, and more reliable vehicles. There is in fact a clear trend to move from internal combustion engines (ICEs) to more integrated electrified powertrains. Providing a detailed overview of this growing area, Advanced Electric Drive Vehicles begins with an introduction to the automotive industry, an explanation of the need for electrification, and a presentation of the fundamentals of conventional vehicles and ICEs. It then proceeds to address the major components of electrified vehicles—i.e., power electronic converters, electric machines, electric motor controllers, and energy storage systems. This comprehensive work: Covers more electric vehicles (MEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), range-extended electric vehicles (REEVs), and all-electric vehicles (EVs) including battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) Describes the electrification technologies applied to nonpropulsion loads, such as power steering and air-conditioning systems Discusses hybrid battery/ultra-capacitor energy storage systems, as well as 48-V electrification and belt-driven starter generator systems Considers vehicle-to-grid (V2G) interface and electrical infrastructure issues, energy management, and optimization in advanced electric drive vehicles Contains numerous illustrations, practical examples, case studies, and challenging questions and problems throughout to ensure a solid understanding of key concepts and applications Advanced Electric Drive Vehicles makes an ideal textbook for senior-level undergraduate or graduate engineering courses and a user-friendly reference for researchers, engineers, managers, and other professionals interested in transportation electrification.

Introduction to Electric Power and Drive Systems

Author: Paul Krause
Publisher: John Wiley & Sons
ISBN: 9781119214274
Release Date: 2017-02-08
Genre: Science

An introduction to the analysis of electric machines, power electronic circuits, electric drive performance, and power systems This book provides students with the basic physical concepts and analysis tools needed for subsequent coursework in electric power and drive systems with a focus on Tesla’s rotating magnetic field. Organized in a flexible format, it allows instructors to select material as needed to fit their school’s power program. The first chapter covers the fundamental concepts and analytical methods that are common to power and electric drive systems. The subsequent chapters offer introductory analyses specific to electric machines, power electronic circuits, drive system performance and simulation, and power systems. In addition, this book: Provides students with an analytical base on which to build in advanced follow-on courses Examines fundamental power conversions (dc-dc, ac-dc and dc-ac), harmonics, and distortion Describes the dynamic computer simulation of a brushless dc drive to illustrate its performance with both a sinusoidal inverter voltage approximation and more realistic stator six-step drive applied voltages Includes in-chapter short problems, numerous worked examples, and end-of-chapter problems to help readers review and more fully understand each topic

Electric Machinery Fundamentals

Author: Stephen J. Chapman
Publisher: McGraw-Hill Medical Publishing
ISBN: 007108617X
Release Date: 2012
Genre: Electric machinery

Electric Machinery Fundamentals continues to be a best-selling machinery text due to its accessible, student-friendly coverage of the important topics in the field. In the fifth edition, the use of MATLAB® continues to be incorporated in examples and problems, where applicable. The targeted and thought-provoking problems you've come to appreciate have been retained in this edition. Chapman continues to share his up-to-date knowledge and experiences in the field in an engaging and understandable style.

Introduction to Chemical Engineering Thermodynamics

Author: Hendrick C Van Ness
Publisher: McGraw-Hill Education
ISBN: 1259696529
Release Date: 2017-03-20
Genre: Technology & Engineering

Introduction to Chemical Engineering Thermodynamics presents comprehensive coverage of the subject of thermodynamics from a chemical engineering viewpoint. The text provides a thorough exposition of the principles of thermodynamics, and details their application to chemical processes. The content is structured to alternate between the development of thermodynamic principles and the correlation and use of thermodynamic properties as well as between theory and applications. The chapters are written in a clear, logically organized manner, and contain an abundance of realistic problems, examples, and illustrations to help students understand complex concepts. New ideas, terms, and symbols constantly challenge the readers to think and encourage them to apply this fundamental body of knowledge to the solution of practical problems. McGraw-Hill Education's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

Introduction to AC Machine Design

Author: Thomas A. Lipo
Publisher: John Wiley & Sons
ISBN: 9781119352167
Release Date: 2017-10-30
Genre: Technology & Engineering

AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Introduction to AC Machine Design brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior ; Introduces electrical machine design to neophytes while also being a resource for experienced designers ; Fully examines AC machine design, beginning with basic electromagnetic principles ; Covers the many facets of the induction machine design. Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.

Electrical Machines with MATLAB Second Edition

Author: Turan Gonen
Publisher: CRC Press
ISBN: 9781439877999
Release Date: 2011-11-16
Genre: Computers

Electrical Machines with MATLAB® encapsulates the invaluable insight and experience that eminent instructor Turan Gönen has acquired in almost 40 years of teaching. With simple, versatile content that separates it from other texts on electrical machines, this book is an ideal self-study tool for advanced students in electrical and other areas of engineering. In response to the often inadequate, rushed coverage of fundamentals in most basic circuit analysis books and courses, this resource is intelligently designed, easy to read, and packed with in-depth information on crucial concepts. Topics include three-phase circuits, power measurement in AC circuits, magnetic circuits, transformers, and induction, synchronous, and direct-current machines. The book starts by reviewing more basic concepts, with numerous examples to clarify their application. It then explores new "buzzword" topics and developments in the area of electrical machine applications and electric power systems, including: Renewable energy Wind energy and related conversion Solar energy Energy storage The smart grid Using International Systems (IS) units throughout, this cross-disciplinary design guide delves into commonly used vocabulary and symbols associated with electrical machinery. Several new appendices contain tools such as an extensive glossary to explain important terms. Outlining a wide range of information—and the many different ways to apply it—this book is an invaluable, multifunctional resource for students and professors, as well as practicing professionals looking to refresh and update their knowledge.

Power System Analysis

Author: J.C. Das
Publisher: CRC Press
ISBN: 9781439820803
Release Date: 2016-04-19
Genre: Technology & Engineering

Fundamental to the planning, design, and operating stages of any electrical engineering endeavor, power system analysis continues to be shaped by dramatic advances and improvements that reflect today’s changing energy needs. Highlighting the latest directions in the field, Power System Analysis: Short-Circuit Load Flow and Harmonics, Second Edition includes investigations into arc flash hazard analysis and its migration in electrical systems, as well as wind power generation and its integration into utility systems. Designed to illustrate the practical application of power system analysis to real-world problems, this book provides detailed descriptions and models of major electrical equipment, such as transformers, generators, motors, transmission lines, and power cables. With 22 chapters and 7 appendices that feature new figures and mathematical equations, coverage includes: Short-circuit analyses, symmetrical components, unsymmetrical faults, and matrix methods Rating structures of breakers Current interruption in AC circuits, and short-circuiting of rotating machines Calculations according to the new IEC and ANSI/IEEE standards and methodologies Load flow, transmission lines and cables, and reactive power flow and control Techniques of optimization, FACT controllers, three-phase load flow, and optimal power flow A step-by-step guide to harmonic generation and related analyses, effects, limits, and mitigation, as well as new converter topologies and practical harmonic passive filter designs—with examples More than 2000 equations and figures, as well as solved examples, cases studies, problems, and references Maintaining the structure, organization, and simplified language of the first edition, longtime power system engineer J.C. Das seamlessly melds coverage of theory and practical applications to explore the most commonly required short-circuit, load-flow, and harmonic analyses. This book requires only a beginning knowledge of the per-unit system, electrical circuits and machinery, and matrices, and it offers significant updates and additional information, enhancing technical content and presentation of subject matter. As an instructional tool for computer simulation, it uses numerous examples and problems to present new insights while making readers comfortable with procedure and methodology.