Euclidean Geometry in Mathematical Olympiads

Author: Evan Chen
Publisher: The Mathematical Association of America
ISBN: 9780883858394
Release Date: 2016-05-02
Genre: Mathematics

This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains as selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads, or for teachers looking for a text for an honor class.

Problems from Murray Klamkin

Author: Andy Liu
Publisher: MAA
ISBN: 0883858282
Release Date: 2009
Genre: Mathematics

A collection of problems proposed by Murray Klamkin over his career. It contains the 'quickies' (problems with quick and neat solutions) he proposed in 'Crux Mathematicorum,' his longer problems, and also problems which were proposed in tribute to him after he died. Solutions are provided.

The IMO Compendium

Author: Dušan Djukić
Publisher: Springer Science & Business Media
ISBN: 1441998543
Release Date: 2011-05-05
Genre: Mathematics

"The IMO Compendium" is the ultimate collection of challenging high-school-level mathematics problems and is an invaluable resource not only for high-school students preparing for mathematics competitions, but for anyone who loves and appreciates mathematics. The International Mathematical Olympiad (IMO), nearing its 50th anniversary, has become the most popular and prestigious competition for high-school students interested in mathematics. Only six students from each participating country are given the honor of participating in this competition every year. The IMO represents not only a great opportunity to tackle interesting and challenging mathematics problems, it also offers a way for high school students to measure up with students from the rest of the world. Until the first edition of this book appearing in 2006, it has been almost impossible to obtain a complete collection of the problems proposed at the IMO in book form. "The IMO Compendium" is the result of a collaboration between four former IMO participants from Yugoslavia, now Serbia and Montenegro, to rescue these problems from old and scattered manuscripts, and produce the ultimate source of IMO practice problems. This book attempts to gather all the problems and solutions appearing on the IMO through 2009. This second edition contains 143 new problems, picking up where the 1959-2004 edition has left off.

Inequalities

Author: Radmila Bulajich Manfrino
Publisher: Springer Science & Business Media
ISBN: 9783034600507
Release Date: 2010-01-01
Genre: Mathematics

This book is intended for the Mathematical Olympiad students who wish to prepare for the study of inequalities, a topic now of frequent use at various levels of mathematical competitions. In this volume we present both classic inequalities and the more useful inequalities for confronting and solving optimization problems. An important part of this book deals with geometric inequalities and this fact makes a big difference with respect to most of the books that deal with this topic in the mathematical olympiad. The book has been organized in four chapters which have each of them a different character. Chapter 1 is dedicated to present basic inequalities. Most of them are numerical inequalities generally lacking any geometric meaning. However, where it is possible to provide a geometric interpretation, we include it as we go along. We emphasize the importance of some of these inequalities, such as the inequality between the arithmetic mean and the geometric mean, the Cauchy-Schwarz inequality, the rearrangementinequality, the Jensen inequality, the Muirhead theorem, among others. For all these, besides giving the proof, we present several examples that show how to use them in mathematical olympiad problems. We also emphasize how the substitution strategy is used to deduce several inequalities.

An Excursion through Elementary Mathematics Volume II

Author: Antonio Caminha Muniz Neto
Publisher: Springer
ISBN: 9783319779744
Release Date: 2018-04-16
Genre: Mathematics

This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This second volume covers Plane Geometry, Trigonometry, Space Geometry, Vectors in the Plane, Solids and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many essential theorems related to the content. An extensive Appendix offering hints on or full solutions for all difficult problems rounds out the book.

Das BUCH der Beweise

Author: Martin Aigner
Publisher: Springer-Verlag
ISBN: 9783662577677
Release Date: 2018-09-17
Genre: Mathematics

Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002

104 Number Theory Problems

Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645616
Release Date: 2007-04-05
Genre: Mathematics

This challenging problem book by renowned US Olympiad coaches, mathematics teachers, and researchers develops a multitude of problem-solving skills needed to excel in mathematical contests and in mathematical research in number theory. Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.

Problem Solving and Selected Topics in Euclidean Geometry

Author: Sotirios E. Louridas
Publisher: Springer Science & Business Media
ISBN: 9781461472735
Release Date: 2014-07-08
Genre: Mathematics

"Problem-Solving and Selected Topics in Euclidean Geometry: in the Spirit of the Mathematical Olympiads" contains theorems which are of particular value for the solution of geometrical problems. Emphasis is given in the discussion of a variety of methods, which play a significant role for the solution of problems in Euclidean Geometry. Before the complete solution of every problem, a key idea is presented so that the reader will be able to provide the solution. Applications of the basic geometrical methods which include analysis, synthesis, construction and proof are given. Selected problems which have been given in mathematical olympiads or proposed in short lists in IMO's are discussed. In addition, a number of problems proposed by leading mathematicians in the subject are included here. The book also contains new problems with their solutions. The scope of the publication of the present book is to teach mathematical thinking through Geometry and to provide inspiration for both students and teachers to formulate "positive" conjectures and provide solutions.

Mathematische Juwelen

Author: Ross Honsberger
Publisher: Springer-Verlag
ISBN: 9783322872654
Release Date: 2013-03-08
Genre: Technology & Engineering