First Order Mathematical Logic

Author: Angelo Margaris
Publisher: Courier Corporation
ISBN: 0486662691
Release Date: 1990
Genre: Mathematics

"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews

First order Logic

Author: Raymond M. Smullyan
Publisher: Courier Corporation
ISBN: 0486683702
Release Date: 1995
Genre: Mathematics

Considered the best book in the field, this completely self-contained study is both an introduction to quantification theory and an exposition of new results and techniques in "analytic" or "cut free" methods. The focus in on the tableau point of view. Topics include trees, tableau method for propositional logic, Gentzen systems, more. Includes 144 illustrations.

A Beginner s Guide to Mathematical Logic

Author: Raymond M. Smullyan
Publisher: Courier Corporation
ISBN: 9780486492377
Release Date: 2014-07-23
Genre: Mathematics

Written by a creative master of mathematical logic, this introductory text combines stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic. Author Raymond Smullyan offers clear, incremental presentations of difficult logic concepts. He highlights each subject with inventive explanations and unique problems. Smullyan's accessible narrative provides memorable examples of concepts related to proofs, propositional logic and first-order logic, incompleteness theorems, and incompleteness proofs. Additional topics include undecidability, combinatoric logic, and recursion theory. Suitable for undergraduate and graduate courses, this book will also amuse and enlighten mathematically minded readers. Dover (2014) original publication. See every Dover book in print at www.doverpublications.com

An Introduction to Mathematical Logic

Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 9780486497853
Release Date: 2013
Genre: Mathematics

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Foundations of Mathematical Logic

Author: Haskell Brooks Curry
Publisher: Courier Corporation
ISBN: 0486634620
Release Date: 1963
Genre: Mathematics

Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods — including algorithms and epitheory — and offers a brief treatment of Markov's approach to algorithms. It also explains elementary facts about lattices and similar algebraic systems. 1963 edition.

Mathematical Logic

Author: Joel W. Robbin
Publisher: Courier Dover Publications
ISBN: 9780486450186
Release Date: 2006-07-07
Genre: Mathematics

This self-contained text will appeal to readers from diverse fields and varying backgrounds. Topics include 1st-order recursive arithmetic, 1st- and 2nd-order logic, and the arithmetization of syntax. Numerous exercises; some solutions. 1969 edition.

Logic for Computer Science

Author: Jean H. Gallier
Publisher: Courier Dover Publications
ISBN: 9780486780825
Release Date: 2015-06-18
Genre: Computers

This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.

Logic as a Tool

Author: Valentin Goranko
Publisher: John Wiley & Sons
ISBN: 9781118880050
Release Date: 2016-08-10
Genre: Mathematics

Written in a clear, precise and user-friendly style, Logic as a Tool: A Guide to Formal Logical Reasoning is intended for undergraduates in both mathematics and computer science, and will guide them to learn, understand and master the use of classical logic as a tool for doing correct reasoning. It offers a systematic and precise exposition of classical logic with many examples and exercises, and only the necessary minimum of theory. The book explains the grammar, semantics and use of classical logical languages and teaches the reader how grasp the meaning and translate them to and from natural language. It illustrates with extensive examples the use of the most popular deductive systems -- axiomatic systems, semantic tableaux, natural deduction, and resolution -- for formalising and automating logical reasoning both on propositional and on first-order level, and provides the reader with technical skills needed for practical derivations in them. Systematic guidelines are offered on how to perform logically correct and well-structured reasoning using these deductive systems and the reasoning techniques that they employ. •Concise and systematic exposition, with semi-formal but rigorous treatment of the minimum necessary theory, amply illustrated with examples •Emphasis both on conceptual understanding and on developing practical skills •Solid and balanced coverage of syntactic, semantic, and deductive aspects of logic •Includes extensive sets of exercises, many of them provided with solutions or answers •Supplemented by a website including detailed slides, additional exercises and solutions For more information browse the book's website at: https://logicasatool.wordpress.com

Mathematical Logic

Author: Stephen Cole Kleene
Publisher: Courier Corporation
ISBN: 9780486317076
Release Date: 2013-04-22
Genre: Mathematics

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.

Set Theory and Logic

Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 9780486139647
Release Date: 2012-05-23
Genre: Mathematics

Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.

A First Course in Logic

Author: Mark Verus Lawson
Publisher: CRC Press
ISBN: 9781351175364
Release Date: 2018-09-24
Genre:

A First Course in Logic is an introduction to first-order logic suitable for first and second year mathematicians and computer scientists. There are three components to this course: propositional logic; Boolean algebras; and predicate/first-order, logic. Logic is the basis of proofs in mathematics — how do we know what we say is true? — and also of computer science — how do I know this program will do what I think it will? Surprisingly little mathematics is needed to learn and understand logic (this course doesn't involve any calculus). The real mathematical prerequisite is an ability to manipulate symbols: in other words, basic algebra. Anyone who can write programs should have this ability.

Naive Mengenlehre

Author: Paul R. Halmos
Publisher: Vandenhoeck & Ruprecht
ISBN: 3525405278
Release Date: 1976
Genre: Arithmetic


Foundations of Mathematical Logic

Author: Haskell B. Curry
Publisher: Courier Corporation
ISBN: 9780486153056
Release Date: 2012-05-24
Genre: Mathematics

Comprehensive graduate-level account of constructive theory of first-order predicate calculus covers formal methods: algorithms and epitheory, brief treatment of Markov's approach to algorithms, elementary facts about lattices, logical connectives, and more. 1963 edition.