First order Logic

Author: Raymond M. Smullyan
Publisher: Courier Corporation
ISBN: 0486683702
Release Date: 1995
Genre: Mathematics

Considered the best book in the field, this completely self-contained study is both an introduction to quantification theory and an exposition of new results and techniques in "analytic" or "cut free" methods. The focus in on the tableau point of view. Topics include trees, tableau method for propositional logic, Gentzen systems, more. Includes 144 illustrations.

First Order Mathematical Logic

Author: Angelo Margaris
Publisher: Courier Corporation
ISBN: 0486662691
Release Date: 1990
Genre: Mathematics

"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews

Mathematical Logic

Author: Stephen Cole Kleene
Publisher: Courier Corporation
ISBN: 9780486317076
Release Date: 2013-04-22
Genre: Mathematics

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.

A Beginner s Guide to Mathematical Logic

Author: Raymond M. Smullyan
Publisher: Courier Corporation
ISBN: 9780486492377
Release Date: 2014-07-23
Genre: Mathematics

Written by a creative master of mathematical logic, this introductory text combines stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic. Author Raymond Smullyan offers clear, incremental presentations of difficult logic concepts. He highlights each subject with inventive explanations and unique problems. Smullyan's accessible narrative provides memorable examples of concepts related to proofs, propositional logic and first-order logic, incompleteness theorems, and incompleteness proofs. Additional topics include undecidability, combinatoric logic, and recursion theory. Suitable for undergraduate and graduate courses, this book will also amuse and enlighten mathematically minded readers. Dover (2014) original publication. See every Dover book in print at www.doverpublications.com

Propositional and Predicate Calculus A Model of Argument

Author: Derek Goldrei
Publisher: Springer Science & Business Media
ISBN: 1846282292
Release Date: 2005-12-27
Genre: Mathematics

Designed specifically for guided independent study. Features a wealth of worked examples and exercises, many with full teaching solutions, that encourage active participation in the development of the material. It focuses on core material and provides a solid foundation for further study.

An Introduction to Mathematical Logic

Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 9780486497853
Release Date: 2013
Genre: Mathematics

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Introduction to Logic

Author: Alfred Tarski
Publisher: Courier Corporation
ISBN: 9780486318899
Release Date: 2013-07-04
Genre: Mathematics

This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.

First Order Logic and Automated Theorem Proving

Author: Melvin Fitting
Publisher: Springer Science & Business Media
ISBN: 9781468403572
Release Date: 2012-12-06
Genre: Mathematics

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issues are not neglected. This does not mean, of course, that the book will be of no interest to philosophers or mathematicians. It does contain a thorough presentation of formal logic and many proof techniques, and as such it contains all the material one would expect to find in a course in formal logic covering completeness but not incompleteness issues. The first item to be addressed is, what are we talking about and why are we interested in it. We are primarily talking about truth as used in mathematical discourse, and our interest in it is, or should be, self-evident. Truth is a semantic concept, so we begin with models and their properties. These are used to define our subject.

First order Logic

Author: Leigh S. Cauman
Publisher: Walter de Gruyter
ISBN: 3110157667
Release Date: 1998-01-01
Genre: Philosophy

An introduction to principles and notation of modern symbolic logic, for those with no prior courses. The structure of material follows that of Quine's Methods of Logic, and may be used as an introduction to that work, with sections on truth-functional logic, predicate logic, relational logic, and identity and description. Exercises are based on problems designed by authors including Quine, John Cooley, Richard Jeffrey, and Lewis Carroll. Annotation copyrighted by Book News, Inc., Portland, OR

Logic for Computer Science

Author: Jean H. Gallier
Publisher: Courier Dover Publications
ISBN: 9780486780825
Release Date: 2015-06-18
Genre: Computers

This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.

Foundations of Mathematical Logic

Author: Haskell Brooks Curry
Publisher: Courier Corporation
ISBN: 0486634620
Release Date: 1963
Genre: Mathematics

Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods — including algorithms and epitheory — and offers a brief treatment of Markov's approach to algorithms. It also explains elementary facts about lattices and similar algebraic systems. 1963 edition.

Introduction to Logic

Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 9780486138053
Release Date: 2012-07-12
Genre: Mathematics

Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.

Logic for Mathematicians

Author: J. Barkley Rosser
Publisher: Courier Dover Publications
ISBN: 9780486468983
Release Date: 2008-12-18
Genre: Mathematics

Hailed by the Bulletin of the American Mathematical Society as "undoubtedly a major addition to the literature of mathematical logic," this volume examines the essential topics and theorems of mathematical reasoning. No background in logic is assumed, and the examples are chosen from a variety of mathematical fields. Starting with an introduction to symbolic logic, the first eight chapters develop logic through the restricted predicate calculus. Topics include the statement calculus, the use of names, an axiomatic treatment of the statement calculus, descriptions, and equality. Succeeding chapters explore abstract set theory—with examinations of class membership as well as relations and functions—cardinal and ordinal arithmetic, and the axiom of choice. An invaluable reference book for all mathematicians, this text is suitable for advanced undergraduates and graduate students. Numerous exercises make it particularly appropriate for classroom use.

Introduction to Mathematical Logic Sixth Edition

Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 9781482237788
Release Date: 2015-05-21
Genre: Mathematics

The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing. The sixth edition incorporates recent work on Gödel’s second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in the new edition for historical considerations. The text also offers historical perspectives and many new exercises of varying difficulty, which motivate and lead students to an in-depth, practical understanding of the material.

Mathematical Logic for Computer Science

Author: Mordechai Ben-Ari
Publisher: Springer Science & Business Media
ISBN: 9781447141297
Release Date: 2012-06-16
Genre: Mathematics

Mathematical Logic for Computer Science is a mathematics textbook with theorems and proofs, but the choice of topics has been guided by the needs of students of computer science. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and easy to understand. The uniform use of tableaux-based techniques facilitates learning advanced logical systems based on what the student has learned from elementary systems. The logical systems presented are: propositional logic, first-order logic, resolution and its application to logic programming, Hoare logic for the verification of sequential programs, and linear temporal logic for the verification of concurrent programs. The third edition has been entirely rewritten and includes new chapters on central topics of modern computer science: SAT solvers and model checking.