Flow and Transport in Porous Formations

Author: Gedeon Dagan
Publisher: Springer Science & Business Media
ISBN: 9783642750151
Release Date: 2012-12-06
Genre: Science

In the mid-seventies, a new area of research has emerged in subsurface hydrology, namely sto chastic modeling of flow and transport. This development has been motivated by the recognition of the ubiquitous presence of heterogeneities in natural formations and of their effect upon transport and flow, on the one hand, and by the vast expansion of computational capability provided by elec tronic machines, on the other. Apart from this, one of the areas in which spatial variability of for mation properties plays a cardinal role is of contaminant transport, a subject of growing interest and concern. I have been quite fortunate to be engaged in research in this area from its inception and to wit ness the rapid growth of the community and of the literature on spatial variability and its impact upon subsurface hydrology. In view of this increasing interest, I decided a few years ago that it would be useful to present the subject in a systematic and comprehensive manner in order to help those who wish to engage themselves in research or application of this new field. I viewed as my primary task to analyze the large scale heterogeneity of aquifers and its effect, presuming that the reader already possesses a background in traditional hydrology. This is achieved in Parts 3, 4 and 5 of the text which incorporate the pertinent material.

Subsurface Flow and Transport

Author: Gedeon Dagan
Publisher: Cambridge University Press
ISBN: 0521020093
Release Date: 2005-10-20
Genre: Science

This book describes a major method in modelling the flow of water and transport of solutes in the subsurface, a subject of considerable interest in the exploitation and preservation of water resources. The stochastic approach allows the uncertainty which affects various properties and parameters to be incorporated in models of subsurface flow and transport. These much more realistic models are of greater use in, for example, modelling the transport and build-up of contaminants in groundwater. The volume is based on the second Kovacs Colloquium organised by the International Hydrological Programme (UNESCO) and the International Association of Hydrological Sciences. Fifteen leading scientists with international reputations review the latest developments in this area. The book is a valuable reference work for graduate students, research workers and professionals in government and public institutions, interested in hydrology, environmental issues, soil physics, petroleum engineering, geological engineering and applied mathematics.

Flow and Transport in Fractured Porous Media

Author: Peter Dietrich
Publisher: Springer Science & Business Media
ISBN: 3540232702
Release Date: 2005-03-02
Genre: Mathematics

This book addresses the characterization of flow and transport in porous fractured media from experimental and modeling perspectives. The volume explores porous media problems, from the origin of the present natural porous structures, to their characterization, and various flow and transport phenomena that exist within the porous media. Examples are miscible displacements in porous media and fractured rock and the physical and chemical interactions within porous fractured aquifers. The book is a comprehensive presentation of investigations performed and analysed on different scales, supporting the understanding and application of experimental studies and numerical simulations.

Flow and Transport in Porous Media and Fractured Rock

Author: Muhammad Sahimi
Publisher: John Wiley & Sons
ISBN: 3527636706
Release Date: 2011-05-09
Genre: Science

In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject. Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.

The Method of Volume Averaging

Author: S. Whitaker
Publisher: Springer Science & Business Media
ISBN: 9789401733892
Release Date: 2013-03-09
Genre: Science

Multiphase systems dominate nearly every area of science and technology, and the method of volume averaging provides a rigorous foundation for the analysis of these systems. The development is based on classical continuum physics, and it provides both the spatially smoothed equations and a method of predicting the effective transport coefficients that appear in those equations. The text is based on a ten-week graduate course that has been taught for more than 20 years at the University of California at Davis and at other universities around the world. Problems dealing with both the theoretical foundations and the applications are included with each chapter, and detailed solutions for all problems are available from the author. The course has attracted participants from chemical engineering, mechanical engineering, civil engineering, hydrologic science, mathematics, chemistry and physics.


ISBN: UCSD:31822009115585
Release Date: 1998
Genre: Engineering

Dispersion in Heterogeneous Geological Formations

Author: Brian Berkowitz
Publisher: Springer Science & Business Media
ISBN: 0792367790
Release Date: 2001-02-28
Genre: Mathematics

In spite of many years of intensive study, our current abilities to quantify and predict contaminant migration in natural geological formations remain severely limited. The heterogeneity of these formations over a wide range of scales necessitates consideration of sophisticated transport theories. The evolution of such theories has escalated to the point that a review of the subject seems timely. While conceptual and mathematical developments were crucial to the introduction of these new approaches, there are now too many publications that contain theoretical abstractions without regard to real systems, or incremental improvements to existing theories which are known not to be applicable. This volume brings together articles representing a broad spectrum of state-of-the-art approaches for characterization and quantification of contaminant dispersion in heterogeneous porous media. Audience: The contributions are intended to be as accessible as possible to a wide readership of academics and professionals with diverse backgrounds such as earth sciences, subsurface hydrology, petroleum engineering, and soil physics.

Modeling Phenomena of Flow and Transport in Porous Media

Author: Jacob Bear
Publisher: Springer
ISBN: 9783319728261
Release Date: 2018-01-25
Genre: Science

This book presents and discusses the construction of mathematical models that describe phenomena of flow and transport in porous media as encountered in civil and environmental engineering, petroleum and agricultural engineering, as well as chemical and geothermal engineering. The phenomena of transport of extensive quantities, like mass of fluid phases, mass of chemical species dissolved in fluid phases, momentum and energy of the solid matrix and of fluid phases occupying the void space of porous medium domains are encountered in all these disciplines. The book, which can also serve as a text for courses on modeling in these disciplines, starts from first principles and focuses on the construction of well-posed mathematical models that describe all these transport phenomena.

Mathematical and Numerical Modeling in Porous Media

Author: Martin A. Diaz Viera
Publisher: CRC Press
ISBN: 9780415665377
Release Date: 2012-07-24
Genre: Mathematics

Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.

Mathematical Modeling for Flow and Transport Through Porous Media

Author: Gedeon Dagan
Publisher: Springer Science & Business Media
ISBN: 0792316169
Release Date: 1992-01-31
Genre: Mathematics

The main aim of this paper is to present some new and general results, ap plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples.

Shallow Groundwater Systems

Author: Peter Dillon
Publisher: CRC Press
ISBN: 9054104430
Release Date: 1998-01-01
Genre: Technology & Engineering

Shallow groundwater systems are important as a source of water, for sustenance of stream baseflow, and for wetland and riparian ecosystems. They are also central to waterlogging, and dryland and irrigation salinity problems. Response time to hydrologic change and pollutant loadings is fast among shallow aquifiers, and it is important that hydrogeologists and natural resource managers understand the unsaturated zone processes which links human activity at the soil surface and the underlying groundwater, and vice versa. This volume of papers explores practical aspects of soil and surface water interactions with groundwater, including modelling of flow and contaminant transport in the unsaturated and saturated zones.

Scale Dependence and Scale Invariance in Hydrology

Author: Garrison Sposito
Publisher: Cambridge University Press
ISBN: 0521088585
Release Date: 2008-10-30
Genre: Science

Leading hydrologists present their views on the role of scale effects in hydrologic phenomena occurring in a range of field settings.