Functions of One Complex Variable II

Author: John B. Conway
Publisher: Springer Science & Business Media
ISBN: 9781461208174
Release Date: 2012-12-06
Genre: Mathematics

This book discusses a variety of problems which are usually treated in a second course on the theory of functions of one complex variable, the level being gauged for graduate students. It treats several topics in geometric function theory as well as potential theory in the plane, covering in particular: conformal equivalence for simply connected regions, conformal equivalence for finitely connected regions, analytic covering maps, de Branges' proof of the Bieberbach conjecture, harmonic functions, Hardy spaces on the disk, potential theory in the plane. A knowledge of integration theory and functional analysis is assumed.

Function Theory of One Complex Variable

Author: Robert Everist Greene
Publisher: American Mathematical Soc.
ISBN: 0821839624
Release Date: 2006
Genre: Mathematics

This book is a text for a first-year graduate course in complex analysis. It is a modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors."--BOOK JACKET.

Functions of One Complex Variable

Author: J.B. Conway
Publisher: Springer Science & Business Media
ISBN: 9781461599722
Release Date: 2012-12-06
Genre: Mathematics

This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.

Theory of Complex Functions

Author: Reinhold Remmert
Publisher: Springer Science & Business Media
ISBN: 9781461209393
Release Date: 2012-12-06
Genre: Mathematics

A lively and vivid look at the material from function theory, including the residue calculus, supported by examples and practice exercises throughout. There is also ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations - in the original language with their English translation - from their classical works. Yet the book is far from being a mere history of function theory, and even experts will find a few new or long forgotten gems here. Destined to accompany students making their way into this classical area of mathematics, the book offers quick access to the essential results for exam preparation. Teachers and interested mathematicians in finance, industry and science will profit from reading this again and again, and will refer back to it with pleasure.

Classical Topics in Complex Function Theory

Author: Reinhold Remmert
Publisher: Springer Science & Business Media
ISBN: 9781475729566
Release Date: 2013-03-14
Genre: Mathematics

An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike

Invitation to Complex Analysis

Author: Ralph P. Boas
Publisher: MAA
ISBN: 9780883857649
Release Date: 2010-08-12
Genre: Mathematics

An ideal choice for a first course in complex analysis, this book can be used either as a classroom text or for independent study. Written in an informal style by a master expositor, the book distills more than half a century of experience with the subject into a lucid, engaging, yet rigorous account. The book reveals both the power of complex analysis as a tool for applications and the intrinsic beauty of the subject as a fundamental part of pure mathematics. Written at the level of courses commonly taught in American universities to seniors and beginning graduate students, the book is suitable for readers acquainted with advanced calculus or introductory real analysis. The treatment goes beyond the standard material of power series, Cauchy's theorem, residues, conformal mapping, and harmonic functions by including accessible discussions of many intriguing topics that are uncommon in a book at this level. Readers will encounter notions ranging from Landau's notation to overconvergent series to the Phragmén-Lindelöf theorem. The flexibility afforded by the supplementary topics and applications makes the book adaptable either to a short, one-term course or to a comprehensive, full-year course.The writing is user-friendly in many ways. Each topic is discussed in a typical, commonly encountered situation rather than in the most general, abstract setting. There are no numbered equations. Numerous exercises interspersed in the text encourage readers to test their understanding of new concepts and techniques as they are presented. Detailed solutions of the exercises, included at the back of the book, both serve as models for students and facilitate independent study. Supplementary exercises at the ends of sections, not solved in the book, provide an additional teaching tool.This second edition of Invitation to Complex Analysis has been painstakingly revised by the author's son, himself an award-winning mathematical expositor.

Harmonic Analysis the Trace Formula and Shimura Varieties

Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 082183844X
Release Date: 2005
Genre: Mathematics

The modern theory of automorphic forms, embodied in what has come to be known as the Langlands program, is an extraordinary unifying force in mathematics. It proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. These "reciprocity laws", conjectured by Langlands, are still largely unproved. However, their capacity to unite large areas of mathematics insures that they will be a central area of study for years to come. The goal of this volume is to provide an entry point into this exciting and challenging field. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area. The longer articles in particular represent an attempt to enable a reader to master some of the more difficult techniques. On the other hand, the book will also be useful to mathematicians who would like simply to understand something of the subject. They will be able to consult the expository portions of the various articles. The volume is centered around the trace formula and Shimura varieties. These areas are at the heart of the subject, but they have been especially difficult to learn because of a lack of expository material. The volume aims to rectify the problem. It is based on the courses given at the 2003 Clay Mathematics Institute Summer School. However, many of the articles have been expanded into comprehensive introductions, either to the trace formula or the theory of Shimura varieties, or to some aspect of the interplay and application of the two areas.

A Course in Arithmetic

Author: J-P. Serre
Publisher: Springer Science & Business Media
ISBN: 9781468498844
Release Date: 2012-12-06
Genre: Mathematics

This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.

Complex Analysis

Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9781475730838
Release Date: 2013-03-14
Genre: Mathematics

Now in its fourth edition, the first part of this book is devoted to the basic material of complex analysis, while the second covers many special topics, such as the Riemann Mapping Theorem, the gamma function, and analytic continuation. Power series methods are used more systematically than is found in other texts, and the resulting proofs often shed more light on the results than the standard proofs. While the first part is suitable for an introductory course at undergraduate level, the additional topics covered in the second part give the instructor of a gradute course a great deal of flexibility in structuring a more advanced course.

Functions of One Complex Variable I

Author: John B. Conway
Publisher: Springer Science & Business Media
ISBN: 9781461263135
Release Date: 2012-12-06
Genre: Mathematics

"This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book." --MATHSCINET

Number Theory

Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 9780387498942
Release Date: 2008-12-17
Genre: Mathematics

This book deals with several aspects of what is now called "explicit number theory." The central theme is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The local aspect, global aspect, and the third aspect is the theory of zeta and L-functions. This last aspect can be considered as a unifying theme for the whole subject.

From Holomorphic Functions to Complex Manifolds

Author: Klaus Fritzsche
Publisher: Springer Science & Business Media
ISBN: 9781468492736
Release Date: 2012-12-06
Genre: Mathematics

This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.

A Course in Operator Theory

Author: John B. Conway
Publisher: American Mathematical Soc.
ISBN: 9780821820650
Release Date: 2000
Genre: Mathematics

A new volume in the marquee series of the AMS, featuring broad mathematical topics written by some of the best and brightest that the mathematics field has to offer. All titles have attractive hardcovers and market-oriented prices.

Complex Analysis

Author: Rubí E. Rodríguez
Publisher: Springer Science & Business Media
ISBN: 9781441973238
Release Date: 2012-11-28
Genre: Mathematics

The authors’ aim here is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician. They follow a path in the tradition of Ahlfors and Bers by dedicating the book to a very precise goal: the statement and proof of the Fundamental Theorem for functions of one complex variable. They discuss the many equivalent ways of understanding the concept of analyticity, and offer a leisure exploration of interesting consequences and applications. Readers should have had undergraduate courses in advanced calculus, linear algebra, and some abstract algebra. No background in complex analysis is required.