Geometric and Topological Methods for Quantum Field Theory

Author: Hernan Ocampo
Publisher: Cambridge University Press
ISBN: 9781139486736
Release Date: 2010-04-29
Genre: Science

Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.

Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory

Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9812705066
Release Date: 2003
Genre: Algebraic topology

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.

Geometric and Topological Methods for Quantum Field Theory

Author: Alexander Cardona
Publisher: Cambridge University Press
ISBN: 9781107355194
Release Date: 2013-05-09
Genre: Science

Based on lectures given at the renowned Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics.

Geometric Algebraic and Topological Methods for Quantum Field Theory

Author: Leonardo Cano
Publisher: World Scientific
ISBN: 9789814730891
Release Date: 2016-09-06
Genre: Mathematics

Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.

Geometric Algebraic and Topological Methods for Quantum Field Theory

Author: Sylvie Payche
Publisher: World Scientific
ISBN: 9789814460057
Release Date: 2014
Genre: Science

Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.

Geometric and Algebraic Topological Methods in Quantum Mechanics

Author: Giovanni Giachetta
Publisher: World Scientific
ISBN: 9789814481144
Release Date: 2005-01-27
Genre: Science

' In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization. Contents:Commutative GeometryClassical Hamiltonian SystemsAlgebraic QuantizationGeometry of Algebraic QuantizationGeometric QuantizationSupergeometryDeformation QuantizationNon-Commutative GeometryGeometry of Quantum Groups Readership: Theoreticians and mathematicians of postgraduate and research level. Keywords:Algebraic Quantum Theory;Poisson Manifold;Hilbert Manifold;Geometric Quantization;Deformation Quantization;Supergeometry;Noncommutative Geometry;Constraint System;Quantum GroupKey Features:The book collects all the advanced methods of quantization in the last decadeIt presents in a compact way all the necessary up to date mathematical tools to be used in studying quantum problems.Reviews:“This book is well-written and I am convinced that it will be useful to all those interested in quantum theory.”Zentralblatt MATH “With respect to a propsective reader having a reasonably good background in mathematics, the notions, concepts, etc, are introduced in a self-contained but condensed manner … The book gives a very helpful supply of mathematical tools needed by a theoretical or mathematical physicist to effect entry into some of the new directions in theoretical physics. Also, a mathematician might appreciate the condensed presentation of definitions and results in one of the modern fields of mathematics for which one may be seeking an overview.”Mathematical Reviews '

Quantum Field Theory and Topology

Author: Albert S. Schwarz
Publisher: Springer Science & Business Media
ISBN: 9783662029435
Release Date: 2013-04-09
Genre: Mathematics

In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.

Geometric Methods for Quantum Field Theory

Author: Hernan Ocampo
Publisher: World Scientific
ISBN: 9789812810571
Release Date: 2001
Genre: Electronic books

Both mathematics and mathematical physics have many active areas of research where the interplay between geometry and quantum field theory has proved extremely fruitful. Duality, gauge field theory, geometric quantization, SeibergOCoWitten theory, spectral properties and families of Dirac operators, and the geometry of loop groups offer some striking recent examples of modern topics which stand on the borderline between geometry and analysis on the one hand and quantum field theory on the other, where the physicist''s and the mathematician''s perspective complement each other, leading to new mathematical and physical concepts and results. This volume introduces the reader to some basic mathematical and physical tools and methods required to follow the recent developments in some active areas of mathematical physics, including duality, gauge field theory, geometric quantization, Seiberg-Witten theory, spectral properties and families of Dirac operators, and the geometry of loop groups. It comprises seven self-contained lectures, which should progressively give the reader a precise idea of some of the techniques used in these areas, as well as a few short communications presented by young participants at the school. Contents: Lectures: Introduction to Differentiable Manifolds and Symplectic Geometry (T Wurzbacher); Spectral Properties of the Dirac Operator and Geometrical Structures (O Hijazi); Quantum Theory of Fermion Systems: Topics Between Physics and Mathematics (E Langmann); Heat Equation and Spectral Geometry. Introduction for Beginners (K Wojciechowski); Renormalized Traces as a Geometric Tool (S Paycha); Concepts in Gauge Theory Leading to Electric-Magnetic Duality (T S Tsun); An Introduction to Seiberg-Witten Theory (H Ocampo); Short Communications: Remarks on Duality, Analytical Torsion and Gaussian Integration in Antisymmetric Field Theories (A Cardona); Multiplicative Anomaly for the e-Regularized Determinant (C Ducourtioux); On Cohomogeneity One Riemannian Manifolds (S M B Kashani); A Differentiable Calculus on the Space of Loops and Connections (M Reiris); Quantum Hall Conductivity and Topological Invariants (A Reyes); Determinant of the Dirac Operator Over the Interval [0, ] (F Torres-Ardila). Readership: Mathematicians and physicists."

Physics and Geometry

Author: David Jou i Mirabent
Publisher: Institut d'Estudis Catalans
ISBN: 8472834417
Release Date: 1999
Genre:


Geometric Phases in Classical and Quantum Mechanics

Author: Dariusz Chruscinski
Publisher: Springer Science & Business Media
ISBN: 9780817681760
Release Date: 2012-12-06
Genre: Mathematics

Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.

Topology for Physicists

Author: Albert S. Schwarz
Publisher: Springer Science & Business Media
ISBN: 9783662029985
Release Date: 2013-03-09
Genre: Mathematics

In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.

Quantum Topology

Author: Louis H Kauffman
Publisher: World Scientific
ISBN: 9789814502672
Release Date: 1993-09-15
Genre: Science

This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories. This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session. This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory. Contents:Introduction to Quantum Topology (L H Kauffman)Knot Theory, Exotic Spheres and Global Gravitational Anomalies (R A Baadhio)A Diagrammatic Theory of Knotted Surfaces (J S Carter & M Saito)A Categorical Construction of 4D Topological Quantum Field Theories (L Crane & D Yetter)Evaluating the Crane-Yetter Invariant (L Crane, L H Kauffman & D Yetter)A Method for Computing the Arf Invariants of Links (P Gilmer)Triangulations, Categories and Extended Topological Field Theories (R J Lawrence)The Casson Invariant for Two-Fold Branched Covers of Links (D Mullins)Elementary Conjectures in Classical Knot Theory (J H Przytycki)Knot Polynomials as States of Nonperturbative Four Dimensional Quantum Gravity (J Pullin)On Invariants of 3-Manifolds Derived from Abelian Groups (J Mattes, M M Polyak & N Reshetikhin)and other papers Readership: Mathematicians and mathematical physicists. keywords:Quantum Topology;Topological Quantum Field Theory;Meeting;AMS Special Session;Dayton, OH (USA)

Advances in Topological Quantum Field Theory

Author: John M. Bryden
Publisher: Springer Science & Business Media
ISBN: 9781402027727
Release Date: 2007-09-27
Genre: Mathematics

This volume is the conference proceedings of the NATO ARW during August 2001 at Kananaskis Village, Canada on 'New Techniques in Topological Quantum Field Theory'. This conference brought together specialists from a number of different fields all related to Topological Quantum Field Theory. The theme of this conference was to attempt to find new methods in quantum topology from the interaction with specialists in these other fields. The featured articles include papers by V. Vassiliev on combinatorial formulas for cohomology of spaces of Knots, the computation of Ohtsuki series by N. Jacoby and R. Lawrence, and a paper by M. Asaeda and J. Przytycki on the torsion conjecture for Khovanov homology by Shumakovitch. Moreover, there are articles on more classical topics related to manifolds and braid groups by such well known authors as D. Rolfsen, H. Zieschang and F. Cohen.

Anomalies in Quantum Field Theory

Author: Reinhold A. Bertlmann
Publisher: Oxford University Press
ISBN: 0198507623
Release Date: 2000-11-02
Genre: Science

An anomaly is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past 20 years. This text presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly as an aid to students. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies. The comprehensive overview of the theory presented in this book will be useful to both students and researchers.