Inverse Theory and Applications in Geophysics

Author: Michael S. Zhdanov
Publisher: Elsevier
ISBN: 9780444627124
Release Date: 2015-07-15
Genre: Science

Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It’s the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner. The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory. Written by one of the world’s foremost experts, this work is widely recognized as the ultimate researcher’s reference on geophysical inverse theory and its practical scientific applications. Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way. Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory. Features more than 300 illustrations, figures, charts and graphs to underscore key concepts. Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade.

Geophysical Data Analysis

Author: William Menke
Publisher: Academic Press
ISBN: 9780123971609
Release Date: 2012
Genre: Mathematics

Please use extracts from reviews of first edition Key Features * Updated and thoroughly revised edition * additional material on geophysical/acoustic tomography * Detailed discussion of application of inverse theory to tectonic, gravitational and geomagnetic studies

Theory and Practice of Geophysical Data Inversion

Author: Andreas Vogel
Publisher: Vieweg+Teubner Verlag
ISBN: 9783322894175
Release Date: 2012-12-06
Genre: Science

The contributions to this volume cover a wide spectrum of recent developments in geophysical data inversion, including basic mathematics and general theory, numerical methods, as well as computer implementation of algorithms. Most of the papers are motivated by problems arising from geophysical research and applications both on a global scale and with respect to local geophysical surveys, underlining the increasing importance of geophysical exploration methods in various fields, such as structural geology, prospecting for mineral and energy resources, hydro geology, geotechnology, environmental protection and archaeology. The first section of the book deals with basic mathematics and general theory underlying geophysical data inversion. Papers presented here are concerned with stabilization algorithms to solve ill-posed inverse problems, sensitivity of kernel function estimations to random data errors and reduction of errors in inverse modelling of response functions by linear constraints, numerical procedures for approximating the solution to boundary value problems, accuracy and stability of inverse ill-posed problems constituted by problems of moments, and fast Fourier transforms for solving potential field problems. The second section contains papers on gravity and magnetics, dealing with the solvability of the inverse gravimetric problem for sources represented by point masses and other elementary, solution of the inverse problem in cases of nonuniformly distributed data as obtained by palaeomagnetic studies, satellite observations, and surface projections of buried archaeological targets by inverse filtering of geomagnetic data.

Global Optimization Methods in Geophysical Inversion

Author: Mrinal K. Sen
Publisher: Cambridge University Press
ISBN: 9781139619516
Release Date: 2013-02-21
Genre: Science

Providing an up-to-date overview of the most popular global optimization methods used in interpreting geophysical observations, this new edition includes a detailed description of the theoretical development underlying each method and a thorough explanation of the design, implementation and limitations of algorithms. New and expanded chapters provide details of recently developed methods, such as the neighborhood algorithm, particle swarm optimization, hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples of applications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration.

Seismic Inversion

Author: Yanghua Wang
Publisher: John Wiley & Sons
ISBN: 9781119258049
Release Date: 2016-09-15
Genre: Science

Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.

Deconvolution and Inverse Theory

Author: V. Dimri
Publisher: Elsevier
ISBN: 9781483291376
Release Date: 2013-10-22
Genre: Science

This is the first study to present simultaneously both deconvolution and inversion, two powerful tools of data analysis. Featured within this volume are various geophysical convolution models and a treatment of deconvolution for a time-varying signal. The single channel time-varying deconvolution is shown equivalent to the multichannel time-invariant deconvolution, thus a formalism and associated algorithms can handle both. Inverse theory as well as various inversion schemes are presented on the basis of a relationship between a small perturbation to the model and its effects on the observation. The information theory inversion scheme is discussed, and several types of norm of minimization presented. Additionally, concepts and results of inverse theory are applied to design a new deconvolution operator for estimating magnetization and density distribution, and the constraint of the Backus-Gilbert formalism of inverse theory is used to design a new prediction error filter for maximum entropy spectral estimates. Maximum likelihood, another high resolution method is also presented. This volume can be utilised as a graduate-level text for courses in Geophysics. Some chapters will be of use for graduate courses in Applied Mathematics, Applied Statistics, and Oceanography.

Seismic Methods and Applications

Author: Andreas Stark
Publisher: Universal-Publishers
ISBN: 9781599424439
Release Date: 2010-06
Genre: Science

This book has been written for those who need a solid understanding of the seismic exploration method without difficult mathematics. It is presented in a format that allows one to naturally progress from the underlying physical principles to the actual seismic method. The mathematics needed for the subject is kept as simple as possible; students only need high school physics and mathematics to thoroughly grasp the principles covered. Dr. Stark has developed this text and honed its content with feedback from hundreds of students over nearly two decades of teaching seismic exploration geophysics. This textbook will teach students the principles for the detection of geologic structures, earthquake zones and hazards, resource exploration, and geotechnical engineering.This title is Winner of 2009 Text and Academic Authors Association "Textbook Excellence Award"

Integrated Imaging of the Earth

Author: Max Moorkamp
Publisher: John Wiley & Sons
ISBN: 9781118929056
Release Date: 2016-05-02
Genre: Science

Reliable and detailed information about the Earth’s subsurface is of crucial importance throughout the geosciences. Quantitative integration of all available geophysical and geological data helps to make Earth models more robust and reliable. The aim of this book is to summarize and synthesize the growing literature on combining various types of geophysical and other geoscientific data. The approaches that have been developed to date encompass joint inversion, cooperative inversion, and statistical post-inversion analysis methods, each with different benefits and assumptions. Starting with the foundations of inverse theory, this book systematically describes the mathematical and theoretical aspects of how to best integrate different geophysical datasets with geological prior understanding and other complimentary data. This foundational basis is followed by chapters that demonstrate the diverse range of applications for which integrated methods have been used to date. These range from imaging the hydrogeological properties of the near-surface to natural resource exploration and probing the composition of the lithosphere and the deep Earth. Each chapter is written by leading experts in the field, which makes this book the definitive reference on integrated imaging of the Earth. Highlights of this volume include: Complete coverage of the theoretical foundations of integrated imaging approaches from inverse theory to different coupling methods and quantitative evaluation of the resulting models Comprehensive overview of current applications of integrated imaging including hydrological investigations, natural resource exploration, and imaging the deep Earth Detailed case studies of integrated approaches providing valuable guidance for both experienced users and researchers new to joint inversion. This volume will be a valuable resource for graduate students, academics, industry practitioners, and researchers who are interested in using or developing integrated imaging approaches.

Bio inspired Computing Theories and Applications

Author: Maoguo Gong
Publisher: Springer
ISBN: 9789811036149
Release Date: 2017-02-12
Genre: Computers

The two-volume set, CCIS 681 and CCIS 682, constitutes the proceedings of the 11th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2016, held in Xi'an, China, in October 2016.The 115 revised full papers presented were carefully reviewed and selected from 343 submissions. The papers of Part I are organized in topical sections on DNA Computing; Membrane Computing; Neural Computing; Machine Learning. The papers of Part II are organized in topical sections on Evolutionary Computing; Multi-objective Optimization; Pattern Recognition; Others.

Geophysical Data Analysis Discrete Inverse Theory

Author: William Menke
Publisher: Academic Press
ISBN: 9780123977847
Release Date: 2012-06-26
Genre: Science

Since 1984, Geophysical Data Analysis has filled the need for a short, concise reference on inverse theory for individuals who have an intermediate background in science and mathematics. The new edition maintains the accessible and succinct manner for which it is known, with the addition of: MATLAB examples and problem sets Advanced color graphics Coverage of new topics, including Adjoint Methods; Inversion by Steepest Descent, Monte Carlo and Simulated Annealing methods; and Bootstrap algorithm for determining empirical confidence intervals Additional material on probability, including Bayesian influence, probability density function, and metropolis algorithm Detailed discussion of application of inverse theory to tectonic, gravitational and geomagnetic studies Numerous examples and end-of-chapter homework problems help you explore and further understand the ideas presented Use as classroom text facilitated by a complete set of exemplary lectures in Microsoft PowerPoint format and homework problem solutions for instructors

Ground Penetrating Radar Theory and Applications

Author: Harry M. Jol
Publisher: Elsevier
ISBN: 0080951848
Release Date: 2008-12-08
Genre: Science

Ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years. The development of GPR spans aspects of geophysical science, technology, and a wide range of scientific and engineering applications. It is the breadth of applications that has made GPR such a valuable tool in the geophysical consulting and geotechnical engineering industries, has lead to its rapid development, and inspired new areas of research in academia. The topic of GPR has gone from not even being mentioned in geophysical texts ten years ago to being the focus of hundreds of research papers and special issues of journals dedicated to the topic. The explosion of primary literature devoted to GPR technology, theory and applications, has lead to a strong demand for an up-to-date synthesis and overview of this rapidly developing field. Because there are specifics in the utilization of GPR for different applications, a review of the current state of development of the applications along with the fundamental theory is required. This book will provide sufficient detail to allow both practitioners and newcomers to the area of GPR to use it as a handbook and primary research reference. *Review of GPR theory and applications by leaders in the field *Up-to-date information and references *Effective handbook and primary research reference for both experienced practitioners and newcomers

Seismic Inversion

Author: Gerard T. Schuster
Publisher: SEG Books
ISBN: 9781560803416
Release Date: 2017-07-01
Genre: Science

This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.

Advanced Computational Infrastructures for Parallel and Distributed Applications

Author: Manish Parashar
Publisher: John Wiley & Sons
ISBN: 0470558016
Release Date: 2010-01-05
Genre: Computers

A unique investigation of the state of the art in design, architectures, and implementations of advanced computational infrastructures and the applications they support Emerging large-scale adaptive scientific and engineering applications are requiring an increasing amount of computing and storage resources to provide new insights into complex systems. Due to their runtime adaptivity, these applications exhibit complicated behaviors that are highly dynamic, heterogeneous, and unpredictable—and therefore require full-fledged computational infrastructure support for problem solving, runtime management, and dynamic partitioning/balancing. This book presents a comprehensive study of the design, architecture, and implementation of advanced computational infrastructures as well as the adaptive applications developed and deployed using these infrastructures from different perspectives, including system architects, software engineers, computational scientists, and application scientists. Providing insights into recent research efforts and projects, the authors include descriptions and experiences pertaining to the realistic modeling of adaptive applications on parallel and distributed systems. The first part of the book focuses on high-performance adaptive scientific applications and includes chapters that describe high-impact, real-world application scenarios in order to motivate the need for advanced computational engines as well as to outline their requirements. The second part identifies popular and widely used adaptive computational infrastructures. The third part focuses on the more specific partitioning and runtime management schemes underlying these computational toolkits. Presents representative problem-solving environments and infrastructures, runtime management strategies, partitioning and decomposition methods, and adaptive and dynamic applications Provides a unique collection of selected solutions and infrastructures that have significant impact with sufficient introductory materials Includes descriptions and experiences pertaining to the realistic modeling of adaptive applications on parallel and distributed systems The cross-disciplinary approach of this reference delivers a comprehensive discussion of the requirements, design challenges, underlying design philosophies, architectures, and implementation/deployment details of advanced computational infrastructures. It makes it a valuable resource for advanced courses in computational science and software/systems engineering for senior undergraduate and graduate students, as well as for computational and computer scientists, software developers, and other industry professionals.